To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

From Wikipedia, the free encyclopedia

MuPAD is a computer algebra system (CAS). Originally developed by the MuPAD research group at the University of Paderborn, Germany, development was taken over by the company SciFace Software GmbH & Co. KG in cooperation with the MuPAD research group and partners from some other universities starting in 1997. MuPAD's graphics package was particularly successful, especially considering the era when it was developed.[citation needed]

Until autumn 2005, the version "MuPAD Light" was offered for free for research and education, but as a result of the closure of the home institute of the MuPAD research group, only the version "MuPAD Pro" became available for purchase.

The MuPAD kernel is bundled with Scientific Notebook and Scientific Workplace. Former versions of MuPAD Pro were bundled with SciLab. In MathCAD's version 14 release MuPAD was adopted as the CAS engine.

In September 2008, SciFace was purchased by MathWorks and the MuPAD code was included in the Symbolic Math Toolbox add-on for MATLAB. On 28 September 2008, MuPAD was withdrawn from the market as a software product in its own right.[1] However, it is still available in the Symbolic Math Toolbox in MATLAB and can also be used as a stand-alone program by the command mupad entered into the MATLAB terminal.

The MuPAD notebook feature has been removed in MATLAB R2020a. However, MATLAB's Symbolic Math Toolbox still uses the MuPAD language as part of its underlying computational engine. MATLAB Live Editor is the recommended environment for performing, documenting, and sharing symbolic math computations.[2]

YouTube Encyclopedic

  • 1/3
    Views:
    5 389
    26 208
    547
  • BE1-HMath1 - An introduction to Symbolic Algebra using MuPAD
  • How to plot 3d vectors in MuPad (MATLAB Symbolic Toolbox)
  • The Varied Forms of Verification with Z3

Transcription

Functionality

MuPAD offers:

Often used commands are accessible via menus. MuPAD offers a notebook concept similar to word processing systems that allows the formulation of mathematical problems as well as graphics visualization and explanations in formatted text.

MuPad does not follow the NIST 4.37 definition for inverse hyperbolic cosine.

It is possible to extend MuPAD with C++ routines to accelerate calculations. Java code can also be embedded.

MuPAD's syntax was modeled on that of the Pascal programming language, and is similar to the one used in the Maple computer algebra system. An important difference between the two is that MuPAD provides support for object-oriented programming. This means that each object "carries with itself" the methods allowed to be used on it. For example, after defining

  A := matrix( [[1,2],[3,4]] )

all of the following are valid expressions and give the expected result:

  A+A, -A, 2*A, A*A, A^-1, exp( A ), A.A, A^0, 0*A

where A.A is the concatenated 2×4 matrix, while all others, including the last two, are again 2×2 matrices.

References

  1. ^ Support for MuPAD
  2. ^ "Symbolic math in MATLAB".
This page was last edited on 2 January 2024, at 18:49
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.