To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
Languages
Recent
Show all languages
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

Motion aftereffect

From Wikipedia, the free encyclopedia

Example movie which produces distortion illusion after one watches it and looks away.

The motion aftereffect (MAE) is a visual illusion experienced after viewing a moving visual stimulus for a time (tens of milliseconds to minutes) with stationary eyes, and then fixating a stationary stimulus. The stationary stimulus appears to move in the opposite direction to the original (physically moving) stimulus. The motion aftereffect is believed to be the result of motion adaptation.

For example, if one looks at a waterfall for about a minute and then looks at the stationary rocks at the side of the waterfall, these rocks appear to be moving upwards slightly. The illusory upwards movement is the motion aftereffect. This particular motion aftereffect is also known as the waterfall illusion.

Another example can be seen when one looks at the center of a rotating spiral for several seconds. The spiral can exhibit outward or inward motion. When one then looks at any stationary pattern, it appears to be moving in the opposite direction. This form of the motion aftereffect is known as the spiral aftereffect.

YouTube Encyclopedic

  • 1/3
    Views:
    193 805
    138 488
    26 776
  • Optical Illusion: The Motion After-Effect
  • Motion Aftereffect Demo (Waterfall)
  • Storm Illusion (Motion After Effect)

Transcription

Explanation

Neurons coding a particular movement reduce their responses with time of exposure to a constantly moving stimulus; this is neural adaptation. Neural adaptation also reduces the spontaneous, baseline activity of these same neurons when responding to a stationary stimulus (see, for example, Barlow & Hill, 1963; Srinivasan & Dvorak, 1979; Glasser, Tsui, Pack, & Tadin, 2011). One theory is that perception of stationary objects—for example, rocks beside a waterfall—is coded as the balance among the baseline responses of neurons coding all possible directions of motion. Neural adaptation of neurons stimulated by downward movement reduces their baseline activity, tilting the balance in favor of upward movement.

History

Aristotle (approx. 350 B.C.) reported illusory movement after viewing constant movement, but he did not specify its direction. The first clear specification of the motion aftereffect was by Jan Evangelista Purkyně (1820), who observed it after looking at a cavalry parade. Robert Addams (1834) reported the waterfall illusion after observing it at the Falls of Foyers in Scotland. According to Verstraten (1996), the term waterfall illusion was coined by Thompson (1880). According to Wade, Thompson, and Morgan, (2014), the most comprehensive single article on the phenomenon is by Gustav Adolf Wohlgemuth (1911).[1]

See also

References

  1. ^ Wohlgemuth, Adolf (1911). On the after-effect of seen movement. Wellesley College Library. Cambridge, University Press.

Sources

  • Addams, R. (1834). An account of a peculiar optical phenomenon seen after having looked at a moving body. London and Edinburgh Philosophical Magazine and Journal of Science, 5, 373–374
  • Aristotle (approx. 350 B.C.) Parva Naturalia.
  • Barlow, H.B., & Hill, R.M. (1963). Evidence for a physiological explanation of the waterfall illusion. Nature, 200, 1345-1347.
  • Glasser, D. M., Tsui, J. M., Pack, C. C., & Tadin, D. (2011). Perceptual and neural consequences of rapid motion adaptation. PNAS Plus, 108(45), E1080–E1088. doi:10.1073/pnas.1101141108
  • Petersen, S. E., Baker, J. F., & Allman, J. M. (1985). Direction-specific adaptation in area MT of the owl monkey, Brain Research, 346, 146-150.
  • Purkinje, J. E. (1820) Beiträge zur näheren Kenntniss des Schwindels aus heautognostischen Daten. Medicinische Jahrbücher des kaiserlich-königlichen österreichischen Staates, 6, 79–125.
  • Srinivasan, M. V., & Dvorak, D. R. (1979). The waterfall illusion in an insect visual system. Vision Research, 19, 1435-1437.
  • Thompson, P. (1880). Optical illusions of motion. Brain, 3, 289-298.
  • Tootell, R. B., Reppas, J. B., Dale, A. M., Look, R. B., Sereno, M. I., Malach, R., Brady, T. J., & Rosen, B. R. (1995), Visual motion aftereffect in human cortical area MT revealed by functional magnetic resonance imaging, Nature, 375", 139-141.
  • Verstraten, F. A. J. (1996). On the ancient history of the direction of the motion aftereffect. Perception, 25, 1177-1188.
  • Wade, N. J., Thompson, P., & Morgan, M. (2014). The after-effect of Adolf Wohlgemuth’s seen motion. Perception, 43, 229-234. doi: 10.1068/p4304ed
  • Wohlgemuth, A. (1911). On the after-effect of seen movement. British Journal of Psychology Monograph Supplement, 1-117.

Bibliography

  • Mather, G., Verstraten, F., & Anstis, S. (1998). The motion aftereffect: A modern perspective. Cambridge, Mass: MIT Press

External links

This page was last edited on 15 April 2023, at 17:50
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.