To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

From Wikipedia, the free encyclopedia

Photographic recording of Kα and Kβ X-ray emission lines for a range of elements; note that for the dispersive element used, the line position is proportional to the wavelength (not energy)

Moseley's law is an empirical law concerning the characteristic X-rays emitted by atoms. The law had been discovered and published by the English physicist Henry Moseley in 1913–1914.[1][2] Until Moseley's work, "atomic number" was merely an element's place in the periodic table and was not known to be associated with any measurable physical quantity.[3] In brief, the law states that the square root of the frequency of the emitted X-ray is approximately proportional to the atomic number:

YouTube Encyclopedic

  • 1/5
    Views:
    15 728
    1 894
    323
    11 361
    12 423
  • MOSELEY'S EXPERIMENT - PERIODIC LAW
  • Justin Wark - Moseley's Law
  • Moseley's law in 1 min #shorts
  • How Did Moseley Discover Atomic Numbers - GCSE Chemistry | kayscience.com
  • Moseleys Law | X-Ray and Atomic number | XRD | Atomic structure| FSc Chemistry Part 1

Transcription

History

Henry Moseley, holding an X-ray tube

The historic periodic table was roughly ordered by increasing atomic weight, but in a few famous cases the physical properties of two elements suggested that the heavier ought to precede the lighter. An example is cobalt having the atomic weight of 58.9 and nickel having the atomic weight of 58.7.

Henry Moseley and other physicists used X-ray diffraction to study the elements, and the results of their experiments led to organizing the periodic table by proton count.

Apparatus

Since the spectral emissions for the lighter elements would be in the soft X-ray range (absorbed by air), the spectrometry apparatus had to be enclosed inside a vacuum.[4] Details of the experimental setup are documented in the journal articles "The High-Frequency Spectra of the Elements" Part I[1] and Part II.[2]

Results

Moseley found that the lines (in Siegbahn notation) were indeed related to the atomic number, Z.[2]

Following Bohr's lead, Moseley found that for the spectral lines, this relationship could be approximated by a simple formula, later called Moseley's Law.[2]

where:
  • is the frequency of the observed X-ray emission line
  • and are constants that depend on the type of line (that is, K, L, etc. in X-ray notation)
  • Rydberg frequency and = 1[2] for lines, and Rydberg frequency and [2] for lines.

Derivation

Moseley derived his formula empirically by fitting the square root of the X-ray frequency plotted against the atomic number.[2] This formula can be explained based on the Bohr model of the atom, namely,

where
  • is the permittivity of free space
  • is the mass of an electron
  • is the charge of an electron
  • is an effective charge of the nucleus, expressed as
  • is the quantum number of final energy level
  • is the quantum number of initial energy level ()

Taking into account the empirically found b constant that reduced (or "screened") the nucleus charge, Bohr's formula for transitions becomes[2]

Dividing both sides by h to convert to the frequency units, one obtains

Screening

A simplified explanation for the effective charge of a nucleus being one less than its actual charge is that an unpaired electron in the K-shell screens it.[5][6] An elaborate discussion criticizing Moseley's interpretation of screening can be found in a paper by Whitaker[7] which is repeated in most modern texts.

A list of experimentally found and theoretically calculated X-ray transition energies is available at NIST.[8] Nowadays, theoretical energies are computed with a much greater accuracy than what Moseley's law provides, using modern computational models such as the Dirac–Fock method (the Hartree–Fock method with the relativistic effects accounted for).

See also

References

  1. ^ a b Moseley, Henry G. J. (1913). Smithsonian Libraries. "The High-Frequency Spectra of the Elements". The London, Edinburgh and Dublin Philosophical Magazine and Journal of Science. 6. London-Edinburgh: London : Taylor & Francis. 26: 1024–1034. doi:10.1080/14786441308635052.
  2. ^ a b c d e f g h Moseley, Henry G. J. (1914). "The High-Frequency Spectra of the Elements. Part II". Philosophical Magazine. 6. 27: 703–713.
  3. ^ e.g. Mehra, J.; Rechenberg, H. (1982). The historical development of quantum theory. Vol. 1, Part 1. New York: Springer-Verlag. pp. 193–196. ISBN 3-540-90642-8.
  4. ^ Bragg, W. H. (1915). X Rays and Crystal Structure. G. Bell and Sons, Ltd. pp. 75–87.
  5. ^ K. R. Naqvi (1996). "The physical (in)significance of Moseley's screening parameter". American Journal of Physics. 64 (10): 1332. Bibcode:1996AmJPh..64.1332R. doi:10.1119/1.18381.
  6. ^ A. M. Lesk (1980). "Reinterpretation of Moseley's experiments relating K alpha line frequencies and atomic number". American Journal of Physics. 48 (6): 492–493. Bibcode:1980AmJPh..48..492L. doi:10.1119/1.12320.
  7. ^ Whitaker, M. A. B. (1999). "The Bohr–Moseley synthesis and a simple model for atomic X-ray energies". European Journal of Physics. 20 (3): 213–220. Bibcode:1999EJPh...20..213W. doi:10.1088/0143-0807/20/3/312. S2CID 250901403.
  8. ^ "NIST X-ray Transition Energies Database".

External links

This page was last edited on 19 February 2024, at 15:34
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.