To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.

Monte Carlo methods for option pricing

From Wikipedia, the free encyclopedia

In mathematical finance, a Monte Carlo option model uses Monte Carlo methods [Notes 1] to calculate the value of an option with multiple sources of uncertainty or with complicated features.[1] The first application to option pricing was by Phelim Boyle in 1977 (for European options). In 1996, M. Broadie and P. Glasserman showed how to price Asian options by Monte Carlo. In 2001 F. A. Longstaff and E. S. Schwartz developed a practical Monte Carlo method for pricing American-style options.

YouTube Encyclopedic

  • 1/5
    45 328
    4 805
    393 089
    358 460
    20 798
  • ✪ Lecture 6: Pricing Options with Monte Carlo
  • ✪ Intro: European Call Valuation by Monte Carlo
  • ✪ Understanding and Creating Monte Carlo Simulation Step By Step
  • ✪ 6. Monte Carlo Simulation
  • ✪ Simulation - Option Pricing Using Matlab




In terms of theory, Monte Carlo valuation relies on risk neutral valuation.[1] Here the price of the option is its discounted expected value; see risk neutrality and rational pricing. The technique applied then, is (1) to generate a large number of possible, but random, price paths for the underlying (or underlyings) via simulation, and (2) to then calculate the associated exercise value (i.e. "payoff") of the option for each path. (3) These payoffs are then averaged and (4) discounted to today. This result is the value of the option.[2]

This approach, although relatively straightforward, allows for increasing complexity:

Least Square Monte Carlo

Least Square Monte Carlo is used in valuing American options. The technique works in a two step procedure.

  • First, a backward induction process is performed in which a value is recursively assigned to every state at every timestep. The value is defined as the least squares regression against market price of the option value at that state and time (-step). Option value for this regression is defined as the value of exercise possibilities (dependent on market price) plus the value of the timestep value which that exercise would result in (defined in the previous step of the process).
  • Secondly, when all states are valued for every timestep, the value of the option is calculated by moving through the timesteps and states by making an optimal decision on option exercise at every step on the hand of a price path and the value of the state that would result in. This second step can be done with multiple price paths to add a stochastic effect to the procedure.


As can be seen, Monte Carlo Methods are particularly useful in the valuation of options with multiple sources of uncertainty or with complicated features, which would make them difficult to value through a straightforward Black–Scholes-style or lattice based computation. The technique is thus widely used in valuing path dependent structures like lookback- and Asian options [9] and in real options analysis.[1][7] Additionally, as above, the modeller is not limited as to the probability distribution assumed.[9]

Conversely, however, if an analytical technique for valuing the option exists—or even a numeric technique, such as a (modified) pricing tree [9]—Monte Carlo methods will usually be too slow to be competitive. They are, in a sense, a method of last resort;[9] see further under Monte Carlo methods in finance. With faster computing capability this computational constraint is less of a concern.

See also



  1. ^ Although the term 'Monte Carlo method' was coined by Stanislaw Ulam in the 1940s, some trace such methods to the 18th century French naturalist Buffon, and a question he asked about the results of dropping a needle randomly on a striped floor or table. See Buffon's needle.


Primary references

  • Boyle, Phelim P. (1977). "Options: A Monte Carlo Approach". Journal of Financial Economics. 4 (3): 323–338. doi:10.1016/0304-405x(77)90005-8. Retrieved June 28, 2012.
  • Broadie, M.; Glasserman, P. (1996). "Estimating Security Price Derivatives Using Simulation" (PDF). Management Science. 42 (2): 269–285. CiteSeerX doi:10.1287/mnsc.42.2.269. Retrieved June 28, 2012.
  • Longstaff, F.A.; Schwartz, E.S. (2001). "Valuing American options by simulation: a simple least squares approach". Review of Financial Studies. 14: 113–148. CiteSeerX doi:10.1093/rfs/14.1.113. Retrieved June 28, 2012.


External links

Online tools

Discussion papers and documents

This page was last edited on 15 February 2019, at 11:43
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.