To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

Molybdenum disilicide

From Wikipedia, the free encyclopedia

Molybdenum disilicide
Names
IUPAC name
Molybdenum disilicide
Other names
Molybdenum(VIII) silicide
Identifiers
ECHA InfoCard 100.032.016 Edit this at Wikidata
Properties
MoSi2
Molar mass 152.11 g/mol
Appearance gray metallic solid
Density 6.26 g/cm3[1][2]
Melting point 2,030 °C (3,690 °F; 2,300 K)[2]
Structure
Tetragonal[1]
I4/mmm (No. 139), tI6
a = 0.32112 nm, c = 0.7845 nm
2
Hazards
Flash point Non-flammable
Related compounds
Other cations
Chromium disilicide
Tungsten disilicide
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
☒N verify (what is checkY☒N ?)

Molybdenum disilicide (MoSi2, or molybdenum silicide), an intermetallic compound, a silicide of molybdenum, is a refractory ceramic with primary use in heating elements. It has moderate density, melting point 2030 °C, and is electrically conductive. At high temperatures it forms a passivation layer of silicon dioxide, protecting it from further oxidation. The thermal stability of MoSi2 alongside its high emissivity make this material, alongside WSi2 attractive for applications as a high emissivity coatings in heat shields for atmospheric entry.[3] MoSi2 is a gray metallic-looking material with tetragonal crystal structure (alpha-modification); its beta-modification is hexagonal and unstable.[4] It is insoluble in most acids but soluble in nitric acid and hydrofluoric acid.

While MoSi2 has excellent resistance to oxidation and high Young's modulus at temperatures above 1000 °C, it is brittle in lower temperatures. Also, at above 1200 °C it loses creep resistance. These properties limits its use as a structural material, but may be offset by using it together with another material as a composite material.

Molybdenum disilicide and MoSi2-based materials are usually made by sintering. Plasma spraying can be used for producing its dense monolithic and composite forms; material produced this way may contain a proportion of β-MoSi2 due to its rapid cooling.

Molybdenum disilicide heating elements can be used for temperatures up to 1800 °C, in electric furnaces used in laboratory and production environment in production of glass, steel, electronics, ceramics, and in heat treatment of materials. While the elements are brittle, they can operate at high power without aging, and their electrical resistivity does not increase with operation time. Their maximum operating temperature has to be lowered in atmospheres with low oxygen content due to breakdown of the passivation layer.[5]

Other ceramic materials used for heating elements include silicon carbide, barium titanate, and lead titanate composite materials.

Molybdenum disilicide is used in microelectronics as a contact material. It is often used as a shunt over polysilicon lines to increase their conductivity and increase signal speed.

YouTube Encyclopedic

  • 1/5
    Views:
    400
    2 589
    1 316
    479
    3 594
  • Molybdenum Silicide MoSi2 Powder
  • Tube Furnace 1800 Heating element MOSI2 Installation
  • Molybdenum Disulfide | TRUNNANO
  • Silicon Carbide Heating Elements
  • Mod-01 Lec-38 Miscellaneous topics: Electric Resistance Heating

Transcription

References

  1. ^ a b A. Nørlund Christensen (1993). "Crystal growth and characterization of the transition metal silicides MoSi2 and WSi2". Journal of Crystal Growth. 129 (1–2): 266–268. Bibcode:1993JCrGr.129..266N. doi:10.1016/0022-0248(93)90456-7.
  2. ^ a b Soo-Jin Park; Min-Kang Seo (2011). Interface Science and Composites. Academic Press. pp. 563–. ISBN 978-0-12-375049-5.
  3. ^ High emissivity coatings on fibrous ceramics for reusable space systems Corrosion Science 2019
  4. ^ F. M. d’Heurle, C. S. Petersson, and M. Y. Tsai (1980). "Observations on the hexagonal form of MoSi2 and WSi2 films produced by ion implantation and on related snowplow effects". J. Appl. Phys. 51 (11): 5976–5980. Bibcode:1980JAP....51.5976D. doi:10.1063/1.327517.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  5. ^ Park, S.J.; Seo, M.K. (2011). Interface Science and Composites. Interface Science and Technology. Elsevier Science. p. 563. ISBN 978-0-12-375049-5. Retrieved 2023-09-09.
This page was last edited on 30 October 2023, at 07:44
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.