To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

Mohorovičić discontinuity

From Wikipedia, the free encyclopedia

Earth's crust and mantle, Moho discontinuity between bottom of crust and solid uppermost mantle

The Mohorovičić discontinuity (/ˌmhəˈrvɪɪ/ MOH-hə-ROH-vih-chitch; Croatian: [moxorôʋiːtʃitɕ])[1] – usually called the Moho discontinuity, Moho boundary, or just Moho – is the boundary between the crust and the mantle of Earth. It is defined by the distinct change in velocity of seismic waves as they pass through changing densities of rock.[2]

The Moho lies almost entirely within the lithosphere (the hard outer layer of the Earth, including the crust).[3] Only beneath mid-ocean ridges does it define the lithosphere–asthenosphere boundary (the depth at which the mantle becomes significantly ductile). The Mohorovičić discontinuity is 5 to 10 kilometres (3–6 mi) below the ocean floor, and 20 to 90 kilometres (10–60 mi) beneath typical continental crusts, with an average of 35 kilometres (22 mi).

Named after the pioneering Croatian seismologist Andrija Mohorovičić, the Moho separates both the oceanic crust and continental crust from the underlying mantle. The Mohorovičić discontinuity was first identified in 1909 by Mohorovičić, when he observed that seismograms from shallow-focus earthquakes had two sets of P-waves and S-waves, one set that followed a direct path near the Earth's surface and the other refracted by a high-velocity medium.[4]

YouTube Encyclopedic

  • 1/5
    Views:
    99 942
    1 457
    12 863
    9 807
    37 008
  • The mohorovicic seismic discontinuity | Cosmology & Astronomy | Khan Academy
  • Gutenberg discontinuity and Mohorovicic discontinuity theory.
  • The Moho and the Theory of Isostasy
  • Mohorovičić discontinuity Meaning
  • HOW TO SAY "MOHOROVICIC"! #mohorovičić #moho #discontinuity #geophysist #andrija mohorovicic

Transcription

The first realization that there were actually distinct layers of the earth came from this guy right over here, Andrija Mohorovicic. And I apologize ahead of time to any Croatians for butchering any of the pronunciation. And he was a meteorologist and a seismologist. And he was the first one to notice, in 1909, when there was an earthquake. There was an earthquake in Croatia, a little bit southeast of Zagreb. So the earthquake was roughly over here. And lucky for him and lucky for us, before that earthquake there was actually a bunch of seismographic stations already in the area. And all these seismographic stations are are, essentially, instruments were installed so that if there was any essentially seismic waves passing, they would be able to measure it when the waves got there. And what was interesting about this, Andrija realized that if the entire earth was just kind of a uniform materials-- let's draw that scenario-- it would get denser as you go down. And so you would have kind of this refraction, this continuous refraction, or these curved pats, happening. But he realized that, let's say we had an earthquake right over here, so this is the uniform case. Uniform. Uniform layer, only one layer, although it does get denser. Then the closer you are to the earthquake-- so waves would get there first, then waves would get over there, then waves would you get over there-- and these are the body waves. These are the ones that are traveling through the earth's crust. But in general, the further you are away from the earthquake, or the time it takes for the waves to get to a point, is going to be proportional to the distance that point is away from the earthquake. So you would expect to see something like this. So if you were to plot on the horizontal axis, if you were to plot distance, and on the vertical axis you were to plot time, you should see something like this. You should see a straight line. And that's just because it's traveling roughly the same velocity along any of these arcs. It's maybe getting a little bit faster as it's getting deeper. But roughly the same velocity as it's traveling along these arcs. And the distance of these arcs are proportional to the distance along the surface, along the distance of the surface. So essentially, the time is, they're all traveling roughly at the same velocity, and their just traveling different distances, so the time it takes is just going to be proportional to the distance. But he noticed something interesting. When he actually measured when the waves from that earthquake reached different seismographic stations, he saw something interesting. So this is in the theoretical, if we had a kind of this uniform one-layered earth. But he saw something interesting. So once again, this is the distance, and this right over here is time. And at 200 kilometers, at 200 kilometers away from the earthquake-- so until 200 kilometers, he saw exactly what you would expect from a uniform earth. It was just the time took was proportional to the distance. But at 200 kilometers, he saw something interesting. All of a sudden, the waves were reaching there faster. The slope of this line changed. It took less time for each incremental distance. So for some reason, the waves that we're going at these farther stations, the stations that were more than 200 kilometers away, somehow they were accelerated. Somehow they were able to move faster. And he's the one that realized that this was because the waves that were getting to these further stations must have traveled through a more dense layer of the earth. So let's just think about it. So if we have a more dense layer, it will fit this information right over here. So if we have a layer like this, which we now know to be the crust, and then you have a denser layer, which we now know to be the mantle, then what you would have is-- so you have your earthquake right over here, closer by, while you're still within the crust, it would be proportional. It would be proportional. And then let's say that this is exactly, this right here is 200 kilometers away. But then if you go any further, the waves would have to travel. They would travel, so they would go like this. And then they would get refracted even harder. So they would get refracted. So they would be a little bit curved ahead of time. But then they're going to a much denser material. Or it's not gradually dense, it's actually kind of a all of a sudden a considerably more dense material, so it will get refracted even more. And then it'll go over here. And since it was able to travel all of this distance in a denser material, it would have traveled faster along this path. And so it would get to this distance on the surface that's more than 200 kilometers away, it would get there faster. And so he said that there must be a denser layer that those waves are traveling through, which we now know to be the mantle. And the boundary between what we now know to be the crust and this denser layer, which we now to be the mantle, is actually named after him. It's called the Mohorovicic discontinuity. And sometimes this is called the Moho for short. So that boundary between the crust and the mantle is now named for him. But this was a huge discovery, because not only was he able to tell us, based on the data-- based on, kind of, indirect data, just based on earthquakes happening, and measuring when the earthquakes reach different points of the earth-- that there probably is a denser layer. And if you do the math, under continental crust that denser layer is about 35 kilometers down. He was able to tell us that there is that layer. But even more importantly, he was able to give the clue that just using information from earthquakes, we could essentially figure out the actual composition of the earth. Because no one has ever dug that deep. No one has ever dug into the mantle, much less the outer core or the inner core. In the next few videos, we're going to kind of take this insight, that we can use information from earthquakes, to actually think about how we know that there is an outer liquid core and that there's an inner core, as well. And then, obviously, you could keep going and think about all the different densities within the mantle and all of that. I won't go into that much detail, but I'll see you in the next video.

Nature and seismology

Two paths of a P-wave, one direct and one refracted as it crosses the Moho[4]
Ordovician ophiolite in Gros Morne National Park, Newfoundland. This rock which formed the Ordovician Moho is exposed on the surface.

The Moho marks the transition in composition between the Earth's crust and the lithospheric mantle. Immediately above the Moho, the velocities of primary seismic waves (P-waves) are consistent with those through basalt (6.7–7.2 km/s), and below they are similar to those through peridotite or dunite (7.6–8.6 km/s).[5] This increase of approximately 1 km/s corresponds to a distinct change in material as the waves pass through the Earth, and is commonly accepted as the lower limit of the Earth's crust.[2] The Moho is characterized by a transition zone of up to 500 meters.[6] Ancient Moho zones are exposed above-ground in numerous ophiolites around the world.[7]

As shown in the figure, the Moho maintains a relatively stable average depth of 10 km under the ocean sea floor, but can vary by more than 70 km below continental land masses.

Beginning in the 1980s, geologists became aware that the Moho does not always coincide with the crust-mantle boundary defined by composition. Xenoliths (lower crust and upper mantle rock brought to the surface by volcanic eruptions) and seismic-reflection data showed that, away from continental cratons, the transition between crust and mantle is marked by basaltic intrusions and may be up to 20 km thick. The Moho may lie well below the crust-mantle boundary and care must be used in interpreting the structure of the crust from seismic data alone.[8]

Serpentinization of mantle rock below slowly spreading mid-ocean ridges can also increase the depth to the Moho, since serpentinization lowers seismic wave velocities.[9][10]

History

Croatian seismologist Andrija Mohorovičić is credited with discovering and defining the Moho.[11] In 1909, he was examining data from a local earthquake in Zagreb when he observed two distinct sets of P-waves and S-waves propagating out from the focus of the earthquake.[12] Mohorovičić knew that waves caused by earthquakes travel at velocities proportional to the density of the material carrying them. As a result of this information, he theorized that the second set of waves could only be caused by a sharp transition in density in the Earth's crust, which could account for such a dramatic change in wave velocity. Using velocity data from the earthquake, he was able to calculate the depth of the Moho to be approximately 54 km, which was supported by subsequent seismological studies.[13]

The Moho has played a large role in the fields of geology and earth science for well over a century. By observing the Moho's refractive nature and how it affects the speed of P-waves, scientists were able to theorize about the earth's composition. These early studies gave rise to modern seismology.[13]

In the early 1960s, Project Mohole was an attempt to drill to the Moho from deep-ocean regions.[14] After initial success in establishing deep-ocean drilling, the project suffered from political and scientific opposition, mismanagement, and cost overruns, and it was cancelled in 1966.[15]

Exploration

Reaching the discontinuity by drilling remains an important scientific objective. Soviet scientists at the Kola Superdeep Borehole pursued the goal from 1970 until 1992. They reached a depth of 12,260 metres (40,220 ft), the world's deepest hole, before abandoning the project.[16] One proposal considers a rock-melting radionuclide-powered capsule with a heavy tungsten needle that can propel itself down to the Moho discontinuity and explore Earth's interior near it and in the upper mantle.[17] The Japanese project Chikyu Hakken ("Earth Discovery") also aims to explore in this general area with the drilling ship, Chikyū, built for the Integrated Ocean Drilling Program (IODP).

Plans called for the drill-ship JOIDES Resolution to sail from Colombo in Sri Lanka in late 2015 and to head for the Atlantis Bank, a promising location in the southwestern Indian Ocean on the Southwest Indian Ridge, to attempt to drill an initial bore hole to a depth of approximately 1.5 kilometres.[18] The attempt did not even reach 1.3 km, but researchers hope to further their investigations at a later date.[19]

See also

Notes

  1. ^ Mangold, Max (2005). Aussprachewörterbuch (in German) (6th ed.). Mannheim: Dudenverlag. p. 559. ISBN 9783411040667.
  2. ^ a b Rudnick, R. L.; Gao, S. (2003), "3.01 – Composition of the Continental Crust", in Holland, Heinrich D.; Turekian, Karl K. (eds.), Treatise on Geochemistry, vol. 3, Pergamon, p. 659, Bibcode:2003TrGeo...3....1R, doi:10.1016/b0-08-043751-6/03016-4, ISBN 978-0-08-043751-4, retrieved 2019-11-21
  3. ^ James Stewart Monroe; Reed Wicander (2008). The changing Earth: exploring geology and evolution (5th ed.). Cengage Learning. p. 216. ISBN 978-0-495-55480-6.
  4. ^ a b Andrew McLeish (1992). Geological science (2nd ed.). Thomas Nelson & Sons. p. 122. ISBN 978-0-17-448221-5.
  5. ^ RB Cathcart & MM Ćirković (2006). Viorel Badescu; Richard Brook Cathcart & Roelof D Schuiling (eds.). Macro-engineering: a challenge for the future. Springer. p. 169. ISBN 978-1-4020-3739-9.
  6. ^ D.P. McKenzie – The Mohorovičić Discontinuity
  7. ^ Korenaga, Jun; Kelemen, Peter B. (1997-12-10). "Origin of gabbro sills in the Moho transition zone of the Oman ophiolite: Implications for magma transport in the oceanic lower crust". Journal of Geophysical Research: Solid Earth. 102 (B12): 27729–27749. Bibcode:1997JGR...10227729K. doi:10.1029/97JB02604.
  8. ^ O'Reilly, Suzanne Y.; Griffin, W.L. (December 2013). "Moho vs crust–mantle boundary: Evolution of an idea". Tectonophysics. 609: 535–546. Bibcode:2013Tectp.609..535O. doi:10.1016/j.tecto.2012.12.031.
  9. ^ Minshull, T. A.; Muller, M. R.; Robinson, C. J.; White, R. S.; Bickle, M. J. (1998). "Is the oceanic Moho a serpentinization front?". Geological Society, London, Special Publications. 148 (1): 71–80. Bibcode:1998GSLSP.148...71M. doi:10.1144/GSL.SP.1998.148.01.05. S2CID 128410328.
  10. ^ Mével, Catherine (September 2003). "Serpentinization of abyssal peridotites at mid-ocean ridges". Comptes Rendus Geoscience. 335 (10–11): 825–852. Bibcode:2003CRGeo.335..825M. doi:10.1016/j.crte.2003.08.006.
  11. ^ Braile, L. W.; Chiangl, C. S. (1986), Barazangi, Muawia; Brown, Larry (eds.), "The continental Mohorovičič Discontinuity: Results from near-vertical and wide-angle seismic reflection studies", Geodynamics Series, vol. 13, American Geophysical Union, pp. 257–272, doi:10.1029/gd013p0257, ISBN 978-0-87590-513-6
  12. ^ Mohorovičić, A. (1910). "Potres od 8.x.1909; Das Beben vom 8.x.1909" [The earthquake of 8 October 1909]. Godisnje Izvjesce Zagrebackog Meteoroloskog Opservatorija za godinu 1909 - Jahrbuch des Meteorologischen Observatoriums in Zagreb für das Jahr 1909 [Yearbook of the Meteorological Observatory in Zagreb for the year 1909] (in Croatian and German). 9 (4): 1–63.
  13. ^ a b Prodehl, Claus; Mooney, Walter D. (2012). Exploring the Earth's Crust – History and Results of Controlled-Source Seismology. doi:10.1130/mem208. ISBN 9780813712086.
  14. ^ Winterer, Edward L. (2000). "Scientific Ocean Drilling, from AMSOC to COMPOST". 50 Years of Ocean Discovery: National Science Foundation 1950–2000. Washington, D.C.: National Academies Press (US).
  15. ^ Mohole, LOCO, CORE, and JOIDES:  A brief chronology Betty Shor, The Scripps Institution of Oceanography, August 1978, 7 pp. Access date 25 June 2019.
  16. ^ "How the Soviets Drilled the Deepest Hole in the World". Wired. 2008-08-25. Retrieved 2008-08-26.
  17. ^ Ozhovan, M.; F. Gibb; P. Poluektov & E. Emets (August 2005). "Probing of the Interior Layers of the Earth with Self-Sinking Capsules". Atomic Energy. 99 (2): 556–562. doi:10.1007/s10512-005-0246-y. S2CID 918850.
  18. ^ Witze, Alexandra (December 2015). "Quest to drill into Earth's mantle restarts". Nature News. 528 (7580): 16–17. Bibcode:2015Natur.528...16W. doi:10.1038/528016a. PMID 26632566.
  19. ^ Kavanagh, Lucas (2016-01-27). "Looking Back on Expedition 360". JOIDES Resolution. Archived from the original on 2016-07-09. Retrieved 2016-09-21. We may not have made it to our goal of 1300 m, but we did drill the deepest ever single-leg hole into hard rock (789 m), which is currently the 5th deepest ever drilled into the hard ocean crust. We also obtained both the longest (2.85 m) and widest (18 cm) single pieces of hard rock ever recovered by the International Ocean Discovery Program and its predecessors! [...] Our hopes are high to return to this site in the not too distant future.

References

External links

This page was last edited on 8 April 2024, at 18:27
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.