To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.

Mittag-Leffler's theorem

From Wikipedia, the free encyclopedia

In complex analysis, Mittag-Leffler's theorem concerns the existence of meromorphic functions with prescribed poles. Conversely, it can be used to express any meromorphic function as a sum of partial fractions. It is sister to the Weierstrass factorization theorem, which asserts existence of holomorphic functions with prescribed zeros.

The theorem is named after the Swedish mathematician Gösta Mittag-Leffler who published versions of the theorem in 1876 and 1884.[1][2][3]


Let be an open set in and be a subset whose limit points, if any, occur on the boundary of . For each in , let be a polynomial in without constant coefficient, i.e. of the form

Then there exists a meromorphic function on whose poles are precisely the elements of and such that for each such pole , the function has only a removable singularity at ; in particular, the principal part of at is . Furthermore, any other meromorphic function on with these properties can be obtained as , where is an arbitrary holomorphic function on .

Proof sketch

One possible proof outline is as follows. If is finite, it suffices to take . If is not finite, consider the finite sum where is a finite subset of . While the may not converge as F approaches E, one may subtract well-chosen rational functions with poles outside of (provided by Runge's theorem) without changing the principal parts of the and in such a way that convergence is guaranteed.


Suppose that we desire a meromorphic function with simple poles of residue 1 at all positive integers. With notation as above, letting

and , Mittag-Leffler's theorem asserts (non-constructively) the existence of a meromorphic function with principal part at for each positive integer . More constructively we can let

This series converges normally on (as can be shown using the M-test) to a meromorphic function with the desired properties.

Pole expansions of meromorphic functions

Here are some examples of pole expansions of meromorphic functions:

See also


  1. ^ Mittag-Leffler (1876). "En metod att analytiskt framställa en funktion af rational karakter, hvilken blir oändlig alltid och endast uti vissa föreskrifna oändlighetspunkter, hvilkas konstanter äro påförhand angifna". Öfversigt af Kongliga Vetenskaps-Akademiens förhandlingar Stockholm. 33 (6): 3–16.
  2. ^ Mittag-Leffler (1884). "Sur la représentation analytique des fonctions monogènes uniformes dʼune variable indépendante". Acta Mathematica. 4: 1–79.
  3. ^ Turner, Laura E. (2013-02-01). "The Mittag-Leffler Theorem: The origin, evolution, and reception of a mathematical result, 1876–1884". Historia Mathematica. 40 (1): 36–83. doi:10.1016/ ISSN 0315-0860.

External links

This page was last edited on 9 April 2022, at 20:18
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.