To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
Show all languages
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.

Minimum-variance unbiased estimator

From Wikipedia, the free encyclopedia

In statistics a minimum-variance unbiased estimator (MVUE) or uniformly minimum-variance unbiased estimator (UMVUE) is an unbiased estimator that has lower variance than any other unbiased estimator for all possible values of the parameter.

For practical statistics problems, it is important to determine the MVUE if one exists, since less-than-optimal procedures would naturally be avoided, other things being equal. This has led to substantial development of statistical theory related to the problem of optimal estimation.

While combining the constraint of unbiasedness with the desirability metric of least variance leads to good results in most practical settings—making MVUE a natural starting point for a broad range of analyses—a targeted specification may perform better for a given problem; thus, MVUE is not always the best stopping point.

YouTube Encyclopedic

  • 1/5
    126 020
    1 199
    5 994
    1 072
    46 993
  • ✪ Proof that the Sample Variance is an Unbiased Estimator of the Population Variance
  • ✪ Algorithm for deriving MVU estimator from Sufficient Statistics
  • ✪ Mod-15 Lec-15 UMVU Estimation, Ancillarity
  • ✪ MVUE for General Linear Model
  • ✪ Minimum Variance Portfolio with 2 Assets




Consider estimation of based on data i.i.d. from some member of a family of densities , where is the parameter space. An unbiased estimator of is UMVUE if ,

for any other unbiased estimator

If an unbiased estimator of exists, then one can prove there is an essentially unique MVUE.[citation needed] Using the Rao–Blackwell theorem one can also prove that determining the MVUE is simply a matter of finding a complete sufficient statistic for the family and conditioning any unbiased estimator on it.

Further, by the Lehmann–Scheffé theorem, an unbiased estimator that is a function of a complete, sufficient statistic is the UMVUE estimator.

Put formally, suppose is unbiased for , and that is a complete sufficient statistic for the family of densities. Then

is the MVUE for

A Bayesian analog is a Bayes estimator, particularly with minimum mean square error (MMSE).

Estimator selection

An efficient estimator need not exist, but if it does and if it is unbiased, it is the MVUE. Since the mean squared error (MSE) of an estimator δ is

the MVUE minimizes MSE among unbiased estimators. In some cases biased estimators have lower MSE because they have a smaller variance than does any unbiased estimator; see estimator bias.


Consider the data to be a single observation from an absolutely continuous distribution on with density

and we wish to find the UMVU estimator of

First we recognize that the density can be written as

Which is an exponential family with sufficient statistic . In fact this is a full rank exponential family, and therefore is complete sufficient. See exponential family for a derivation which shows


Here we use Lehmann–Scheffé theorem to get the MVUE

Clearly is unbiased and is complete sufficient, thus the UMVU estimator is

This example illustrates that an unbiased function of the complete sufficient statistic will be UMVU, as Lehmann–Scheffé theorem states.

Other examples

where m is the sample maximum. This is a scaled and shifted (so unbiased) transform of the sample maximum, which is a sufficient and complete statistic. See German tank problem for details.

See also

Bayesian analogs


  • Keener, Robert W. (2006). Statistical Theory: Notes for a Course in Theoretical Statistics. Springer. pp. 47–48, 57–58.
  • Voinov V. G.,, Nikulin M.S. (1993). Unbiased estimators and their applications, Vol.1: Univariate case. Kluwer Academic Publishers. pp. 521p.
This page was last edited on 27 December 2018, at 05:45
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.