To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
Languages
Recent
Show all languages
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

From Wikipedia, the free encyclopedia

Materialise Mimics
Developer(s)Materialise NV
Stable release
20.0 / June 2017
Operating systemWindows
Platform64bit
WebsiteMimics' Homepage

Materialise Mimics is an image processing software for 3D design and modeling, developed by Materialise NV,[1] a Belgian company specialized in additive manufacturing software and technology for medical, dental and additive manufacturing industries. Materialise Mimics is used to create 3D surface models from stacks of 2D image data. These 3D models can then be used for a variety of engineering applications. Mimics is an acronym for Materialise Interactive Medical Image Control System. It is developed in an ISO environment with CE and FDA 510k premarket clearance. Materialise Mimics is commercially available as part of the Materialise Mimics Innovation Suite, which also contains Materialise 3-matic, a design and meshing software for anatomical data. The current version is 24.0(released in 2021), and it supports Windows 10, Windows 7, Vista and XP in x64.

YouTube Encyclopedic

  • 1/3
    Views:
    2 208
    166 696
    21 540
  • How to Create a 3D Printed Heart Model (DORV) | Mimics InPrint | Materialise Medical
  • Stanford engineer creates circuit board that mimics the human brain
  • Mimics 1 Importing Data

Transcription

Process

Materialise Mimics calculates surface 3D models from stacked image data such as Computed Tomography (CT), Micro CT, Magnetic Resonance Imaging (MRI), Confocal Microscopy, X-ray and Ultrasound, through image segmentation. The ROI, selected in the segmentation process is converted to a 3D surface model using an adapted marching cubes algorithm that takes the partial volume effect into account, leading to very accurate 3D models.[2][3] The 3D files are represented in the STL format.

Uploading Data

DICOM data from CT or MRI images can be uploaded into Materialise Mimics in order to begin the segmentation process. From this data, 3 different views are present: the coronal, axial, and sagittal views. Another window is present to display 3D objects.

Mask Creation

The "New Mask" tool can be used to highlight specific anatomy from the DICOM data.

Printing Models

Models can be sent to 3D printers in the form of STLs.

Different meshes visualized on spinal vertebrae.
Spinal vertebrae displaying various mesh options. Top: normal high-density STL; Middle: surface mesh for FEA; Bottom: volume mesh including grayvalue-based material assignment
Aortic arch with thrombus modeled using Materialise Mimics.

Gallery

See also

References

  1. ^ materialise.com
  2. ^ Gelaude F, Vander Sloten J, Lauwers B. Accuracy assessment of CT-based outer surface meshes, Computer Aided Surgery 2008, 13(4), p188-199.
  3. ^ Jamali AA et al. Linear and angular measurements of computer-generated models: are they accurate, valid and reliable? Computer Aided Surgery 2007, 12(5), p278-285.

External links

This page was last edited on 13 June 2023, at 12:42
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.