To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
Languages
Recent
Show all languages
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

From Wikipedia, the free encyclopedia

In abstract algebra, a medial magma or medial groupoid is a magma or groupoid (that is, a set with a binary operation) that satisfies the identity

(xy) • (uv) = (xu) • (yv),

or more simply,

xyuv = xuyv

for all x, y, u and v, using the convention that juxtaposition denotes the same operation but has higher precedence. This identity has been variously called medial, abelian, alternation, transposition, interchange, bi-commutative, bisymmetric, surcommutative, entropic, etc.[1]

Any commutative semigroup is a medial magma, and a medial magma has an identity element if and only if it is a commutative monoid. The "only if" direction is the Eckmann–Hilton argument. Another class of semigroups forming medial magmas are normal bands.[2] Medial magmas need not be associative: for any nontrivial abelian group with operation + and integers mn, the new binary operation defined by xy = mx + ny yields a medial magma that in general is neither associative nor commutative.

Using the categorical definition of product, for a magma M, one may define the Cartesian square magma M × M with the operation

(x, y) • (u, v) = (xu, yv).

The binary operation of M, considered as a mapping from M × M to M, maps (x, y) to xy, (u, v) to uv, and (xu, yv)  to (xu) • (yv) . Hence, a magma M is medial if and only if its binary operation is a magma homomorphism from M × M to M. This can easily be expressed in terms of a commutative diagram, and thus leads to the notion of a medial magma object in a category with a Cartesian product. (See the discussion in auto magma object.)

If f and g are endomorphisms of a medial magma, then the mapping fg defined by pointwise multiplication

(fg)(x) = f(x) • g(x)

is itself an endomorphism. It follows that the set End(M) of all endomorphisms of a medial magma M is itself a medial magma.

Bruck–Murdoch–Toyoda theorem

The Bruck–Murdoch–Toyoda theorem provides the following characterization of medial quasigroups. Given an abelian group A and two commuting automorphisms φ and ψ of A, define an operation on A by

xy = φ(x) + ψ(y) + c,

where c some fixed element of A. It is not hard to prove that A forms a medial quasigroup under this operation. The Bruck–Toyoda theorem states that every medial quasigroup is of this form, i.e. is isomorphic to a quasigroup defined from an abelian group in this way.[3] In particular, every medial quasigroup is isotopic to an abelian group.

The result was obtained independently in 1941 by Murdoch and Toyoda.[4][5] It was then rediscovered by Bruck in 1944.[6]

Generalizations

The term medial or (more commonly) entropic is also used for a generalization to multiple operations. An algebraic structure is an entropic algebra[7] if every two operations satisfy a generalization of the medial identity. Let f and g be operations of arity m and n, respectively. Then f and g are required to satisfy

Nonassociative examples

A particularly natural example of a nonassociative medial magma is given by collinear points on elliptic curves. The operation xy = −(x + y) for points on the curve, corresponding to drawing a line between x and y and defining xy as the third intersection point of the line with the elliptic curve, is a (commutative) medial magma which is isotopic to the operation of elliptic curve addition.

Unlike elliptic curve addition, xy is independent of the choice of a neutral element on the curve, and further satisfies the identities x • (xy) = y. This property is commonly used in purely geometric proofs that elliptic curve addition is associative.

Citations

References

  • Murdoch, D.C. (May 1941), "Structure of abelian quasi-groups", Trans. Amer. Math. Soc., 49 (3): 392–409, doi:10.1090/s0002-9947-1941-0003427-2, JSTOR 1989940
  • Toyoda, K. (1941), "On axioms of linear functions", Proc. Imp. Acad. Tokyo, 17 (7): 221–227, doi:10.3792/pia/1195578751
  • Bruck, R.H. (January 1944), "Some results in the theory of quasigroups", Trans. Amer. Math. Soc., 55 (1): 19–52, doi:10.1090/s0002-9947-1944-0009963-x, JSTOR 1990138
  • Yamada, Miyuki (1971), "Note on exclusive semigroups", Semigroup Forum, 3 (1): 160–167, doi:10.1007/BF02572956
  • Ježek, J.; Kepka, T. (1983). "Medial groupoids". Rozpravy Československé Akad. Věd Řada Mat. Přírod. Věd. 93 (2): 93pp. Archived from the original on 2011-07-18.
  • Davey, B. A.; Davis, G. (1985). "Tensor products and entropic varieties". Algebra Universalis. 21: 68–88. doi:10.1007/BF01187558.
  • Kuzʹmin, E. N.; Shestakov, I. P. (1995). "Non-associative structures". Algebra VI. Encyclopaedia of Mathematical Sciences. Vol. 6. Berlin, New York: Springer-Verlag. pp. 197–280. ISBN 978-3-540-54699-3.
This page was last edited on 26 March 2024, at 13:08
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.