To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time. 4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds # Matrix t-distribution

Notation ${\rm {T}}_{n,p}(\nu ,\mathbf {M} ,{\boldsymbol {\Sigma }},{\boldsymbol {\Omega }})$ $\mathbf {M}$ location (real $n\times p$ matrix) ${\boldsymbol {\Omega }}$ scale (positive-definite real $p\times p$ matrix) ${\boldsymbol {\Sigma }}$ scale (positive-definite real $n\times n$ matrix) $\nu$ degrees of freedom $\mathbf {X} \in \mathbb {R} ^{n\times p}$ ${\frac {\Gamma _{p}\left({\frac {\nu +n+p-1}{2}}\right)}{(\pi )^{\frac {np}{2}}\Gamma _{p}\left({\frac {\nu +p-1}{2}}\right)}}|{\boldsymbol {\Omega }}|^{-{\frac {n}{2}}}|{\boldsymbol {\Sigma }}|^{-{\frac {p}{2}}}$ $\times \left|\mathbf {I} _{n}+{\boldsymbol {\Sigma }}^{-1}(\mathbf {X} -\mathbf {M} ){\boldsymbol {\Omega }}^{-1}(\mathbf {X} -\mathbf {M} )^{\rm {T}}\right|^{-{\frac {\nu +n+p-1}{2}}}$ No analytic expression $\mathbf {M}$ if $\nu +p-n>1$ , else undefined $\mathbf {M}$ ${\frac {{\boldsymbol {\Sigma }}\otimes {\boldsymbol {\Omega }}}{\nu -2}}$ if $\nu >2$ , else undefined see below

In statistics, the matrix t-distribution (or matrix variate t-distribution) is the generalization of the multivariate t-distribution from vectors to matrices. The matrix t-distribution shares the same relationship with the multivariate t-distribution that the matrix normal distribution shares with the multivariate normal distribution.[clarification needed] For example, the matrix t-distribution is the compound distribution that results from sampling from a matrix normal distribution having sampled the covariance matrix of the matrix normal from an inverse Wishart distribution.[citation needed]

In a Bayesian analysis of a multivariate linear regression model based on the matrix normal distribution, the matrix t-distribution is the posterior predictive distribution.

## Definition

For a matrix t-distribution, the probability density function at the point $\mathbf {X}$ of an $n\times p$ space is

$f(\mathbf {X} ;\nu ,\mathbf {M} ,{\boldsymbol {\Sigma }},{\boldsymbol {\Omega }})=K\times \left|\mathbf {I} _{n}+{\boldsymbol {\Sigma }}^{-1}(\mathbf {X} -\mathbf {M} ){\boldsymbol {\Omega }}^{-1}(\mathbf {X} -\mathbf {M} )^{\rm {T}}\right|^{-{\frac {\nu +n+p-1}{2}}},$ where the constant of integration K is given by

$K={\frac {\Gamma _{p}\left({\frac {\nu +n+p-1}{2}}\right)}{(\pi )^{\frac {np}{2}}\Gamma _{p}\left({\frac {\nu +p-1}{2}}\right)}}|{\boldsymbol {\Omega }}|^{-{\frac {n}{2}}}|{\boldsymbol {\Sigma }}|^{-{\frac {p}{2}}}.$ Here $\Gamma _{p}$ is the multivariate gamma function.

The characteristic function and various other properties can be derived from the generalized matrix t-distribution (see below).

## Generalized matrix t-distribution

Notation ${\rm {T}}_{n,p}(\alpha ,\beta ,\mathbf {M} ,{\boldsymbol {\Sigma }},{\boldsymbol {\Omega }})$ $\mathbf {M}$ location (real $n\times p$ matrix) ${\boldsymbol {\Omega }}$ scale (positive-definite real $p\times p$ matrix) ${\boldsymbol {\Sigma }}$ scale (positive-definite real $n\times n$ matrix) $\alpha >(p-1)/2$ shape parameter $\beta >0$ scale parameter $\mathbf {X} \in \mathbb {R} ^{n\times p}$ ${\frac {\Gamma _{p}(\alpha +n/2)}{(2\pi /\beta )^{\frac {np}{2}}\Gamma _{p}(\alpha )}}|{\boldsymbol {\Omega }}|^{-{\frac {n}{2}}}|{\boldsymbol {\Sigma }}|^{-{\frac {p}{2}}}$ $\times \left|\mathbf {I} _{n}+{\frac {\beta }{2}}{\boldsymbol {\Sigma }}^{-1}(\mathbf {X} -\mathbf {M} ){\boldsymbol {\Omega }}^{-1}(\mathbf {X} -\mathbf {M} )^{\rm {T}}\right|^{-(\alpha +n/2)}$ $\Gamma _{p}$ is the multivariate gamma function. No analytic expression $\mathbf {M}$ ${\frac {2({\boldsymbol {\Sigma }}\otimes {\boldsymbol {\Omega }})}{\beta (2\alpha -p-1)}}$ see below

The generalized matrix t-distribution is a generalization of the matrix t-distribution with two parameters α and β in place of ν.

This reduces to the standard matrix t-distribution with $\beta =2,\alpha ={\frac {\nu +p-1}{2}}.$ The generalized matrix t-distribution is the compound distribution that results from an infinite mixture of a matrix normal distribution with an inverse multivariate gamma distribution placed over either of its covariance matrices.

### Properties

If $\mathbf {X} \sim {\rm {T}}_{n,p}(\alpha ,\beta ,\mathbf {M} ,{\boldsymbol {\Sigma }},{\boldsymbol {\Omega }})$ then[citation needed]

$\mathbf {X} ^{\rm {T}}\sim {\rm {T}}_{p,n}(\alpha ,\beta ,\mathbf {M} ^{\rm {T}},{\boldsymbol {\Omega }},{\boldsymbol {\Sigma }}).$ The property above comes from Sylvester's determinant theorem:

$\det \left(\mathbf {I} _{n}+{\frac {\beta }{2}}{\boldsymbol {\Sigma }}^{-1}(\mathbf {X} -\mathbf {M} ){\boldsymbol {\Omega }}^{-1}(\mathbf {X} -\mathbf {M} )^{\rm {T}}\right)=$ $\det \left(\mathbf {I} _{p}+{\frac {\beta }{2}}{\boldsymbol {\Omega }}^{-1}(\mathbf {X} ^{\rm {T}}-\mathbf {M} ^{\rm {T}}){\boldsymbol {\Sigma }}^{-1}(\mathbf {X} ^{\rm {T}}-\mathbf {M} ^{\rm {T}})^{\rm {T}}\right).$ If $\mathbf {X} \sim {\rm {T}}_{n,p}(\alpha ,\beta ,\mathbf {M} ,{\boldsymbol {\Sigma }},{\boldsymbol {\Omega }})$ and $\mathbf {A} (n\times n)$ and $\mathbf {B} (p\times p)$ are nonsingular matrices then[citation needed]

$\mathbf {AXB} \sim {\rm {T}}_{n,p}(\alpha ,\beta ,\mathbf {AMB} ,\mathbf {A} {\boldsymbol {\Sigma }}\mathbf {A} ^{\rm {T}},\mathbf {B} ^{\rm {T}}{\boldsymbol {\Omega }}\mathbf {B} ).$ $\phi _{T}(\mathbf {Z} )={\frac {\exp({\rm {tr}}(i\mathbf {Z} '\mathbf {M} ))|{\boldsymbol {\Omega }}|^{\alpha }}{\Gamma _{p}(\alpha )(2\beta )^{\alpha p}}}|\mathbf {Z} '{\boldsymbol {\Sigma }}\mathbf {Z} |^{\alpha }B_{\alpha }\left({\frac {1}{2\beta }}\mathbf {Z} '{\boldsymbol {\Sigma }}\mathbf {Z} {\boldsymbol {\Omega }}\right),$ where

$B_{\delta }(\mathbf {WZ} )=|\mathbf {W} |^{-\delta }\int _{\mathbf {S} >0}\exp \left({\rm {tr}}(-\mathbf {SW} -\mathbf {S^{-1}Z} )\right)|\mathbf {S} |^{-\delta -{\frac {1}{2}}(p+1)}d\mathbf {S} ,$ and where $B_{\delta }$ is the type-two Bessel function of Herz[clarification needed] of a matrix argument.