To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

Material derivative

From Wikipedia, the free encyclopedia

In continuum mechanics, the material derivative[1][2] describes the time rate of change of some physical quantity (like heat or momentum) of a material element that is subjected to a space-and-time-dependent macroscopic velocity field. The material derivative can serve as a link between Eulerian and Lagrangian descriptions of continuum deformation.[3]

For example, in fluid dynamics, the velocity field is the flow velocity, and the quantity of interest might be the temperature of the fluid. In which case, the material derivative then describes the temperature change of a certain fluid parcel with time, as it flows along its pathline (trajectory).

YouTube Encyclopedic

  • 1/5
    Views:
    59 386
    13 569
    5 422
    973
    887
  • Fluid Mechanics: Topic 10.2 - The material derivative
  • Fluid Acceleration and Material Derivative Animation #1
  • Fluid Mechanics Lesson 04A: The Material Derivative
  • What is the material derivative? 【Basic of fluid mechanics】
  • Material Derivative Review

Transcription

Other names

There are many other names for the material derivative, including:

  • advective derivative[4]
  • convective derivative[5]
  • derivative following the motion[1]
  • hydrodynamic derivative[1]
  • Lagrangian derivative[6]
  • particle derivative[7]
  • substantial derivative[1]
  • substantive derivative[8]
  • Stokes derivative[8]
  • total derivative,[1][9] although the material derivative is actually a special case of the total derivative[9]

Definition

The material derivative is defined for any tensor field y that is macroscopic, with the sense that it depends only on position and time coordinates, y = y(x, t):

where y is the covariant derivative of the tensor, and u(x, t) is the flow velocity. Generally the convective derivative of the field u·∇y, the one that contains the covariant derivative of the field, can be interpreted both as involving the streamline tensor derivative of the field u·(∇y), or as involving the streamline directional derivative of the field (u·∇) y, leading to the same result.[10] Only this spatial term containing the flow velocity describes the transport of the field in the flow, while the other describes the intrinsic variation of the field, independent of the presence of any flow. Confusingly, sometimes the name "convective derivative" is used for the whole material derivative D/Dt, instead for only the spatial term u·∇.[2] The effect of the time-independent terms in the definitions are for the scalar and tensor case respectively known as advection and convection.

Scalar and vector fields

For example, for a macroscopic scalar field φ(x, t) and a macroscopic vector field A(x, t) the definition becomes:

In the scalar case φ is simply the gradient of a scalar, while A is the covariant derivative of the macroscopic vector (which can also be thought of as the Jacobian matrix of A as a function of x). In particular for a scalar field in a three-dimensional Cartesian coordinate system (x1, x2, x3), the components of the velocity u are u1, u2, u3, and the convective term is then:

Development

Consider a scalar quantity φ = φ(x, t), where t is time and x is position. Here φ may be some physical variable such as temperature or chemical concentration. The physical quantity, whose scalar quantity is φ, exists in a continuum, and whose macroscopic velocity is represented by the vector field u(x, t).

The (total) derivative with respect to time of φ is expanded using the multivariate chain rule:

It is apparent that this derivative is dependent on the vector

which describes a chosen path x(t) in space. For example, if is chosen, the time derivative becomes equal to the partial time derivative, which agrees with the definition of a partial derivative: a derivative taken with respect to some variable (time in this case) holding other variables constant (space in this case). This makes sense because if , then the derivative is taken at some constant position. This static position derivative is called the Eulerian derivative.

An example of this case is a swimmer standing still and sensing temperature change in a lake early in the morning: the water gradually becomes warmer due to heating from the sun. In which case the term is sufficient to describe the rate of change of temperature.

If the sun is not warming the water (i.e. ), but the path x(t) is not a standstill, the time derivative of φ may change due to the path. For example, imagine the swimmer is in a motionless pool of water, indoors and unaffected by the sun. One end happens to be at a constant high temperature and the other end at a constant low temperature. By swimming from one end to the other the swimmer senses a change of temperature with respect to time, even though the temperature at any given (static) point is a constant. This is because the derivative is taken at the swimmer's changing location and the second term on the right is sufficient to describe the rate of change of temperature. A temperature sensor attached to the swimmer would show temperature varying with time, simply due to the temperature variation from one end of the pool to the other.

The material derivative finally is obtained when the path x(t) is chosen to have a velocity equal to the fluid velocity

That is, the path follows the fluid current described by the fluid's velocity field u. So, the material derivative of the scalar φ is

An example of this case is a lightweight, neutrally buoyant particle swept along a flowing river and experiencing temperature changes as it does so. The temperature of the water locally may be increasing due to one portion of the river being sunny and the other in a shadow, or the water as a whole may be heating as the day progresses. The changes due to the particle's motion (itself caused by fluid motion) is called advection (or convection if a vector is being transported).

The definition above relied on the physical nature of a fluid current; however, no laws of physics were invoked (for example, it was assumed that a lightweight particle in a river will follow the velocity of the water), but it turns out that many physical concepts can be described concisely using the material derivative. The general case of advection, however, relies on conservation of mass of the fluid stream; the situation becomes slightly different if advection happens in a non-conservative medium.

Only a path was considered for the scalar above. For a vector, the gradient becomes a tensor derivative; for tensor fields we may want to take into account not only translation of the coordinate system due to the fluid movement but also its rotation and stretching. This is achieved by the upper convected time derivative.

Orthogonal coordinates

It may be shown that, in orthogonal coordinates, the j-th component of the convection term of the material derivative of a vector field is given by[11]

where the hi are related to the metric tensors by

In the special case of a three-dimensional Cartesian coordinate system (x, y, z), and A being a 1-tensor (a vector with three components), this is just:

where is a Jacobian matrix.

See also

References

  1. ^ a b c d e Bird, R.B.; Stewart, W.E.; Lightfoot, E.N. (2007). Transport Phenomena (Revised Second ed.). John Wiley & Sons. p. 83. ISBN 978-0-470-11539-8.
  2. ^ a b Batchelor, G. K. (1967). An Introduction to Fluid Dynamics. Cambridge University Press. pp. 72–73. ISBN 0-521-66396-2.
  3. ^ Trenberth, K. E. (1993). Climate System Modeling. Cambridge University Press. p. 99. ISBN 0-521-43231-6.
  4. ^ Majda, A. (2003). Introduction to PDEs and Waves for the Atmosphere and Ocean. Courant Lecture Notes in Mathematics. Vol. 9. American Mathematical Society. p. 1. ISBN 0-8218-2954-8.
  5. ^ Ockendon, H.; Ockendon, J.R. (2004). Waves and Compressible Flow. Springer. p. 6. ISBN 0-387-40399-X.
  6. ^ Mellor, G.L. (1996). Introduction to Physical Oceanography. Springer. p. 19. ISBN 1-56396-210-1.
  7. ^ Stoker, J.J. (1992). Water Waves: The Mathematical Theory with Applications. Wiley. p. 5. ISBN 0-471-57034-6.
  8. ^ a b Granger, R.A. (1995). Fluid Mechanics. Courier Dover Publications. p. 30. ISBN 0-486-68356-7.
  9. ^ a b Landau, L.D.; Lifshitz, E.M. (1987). Fluid Mechanics. Course of Theoretical Physics. Vol. 6 (2nd ed.). Butterworth-Heinemann. pp. 3–4 & 227. ISBN 0-7506-2767-0.
  10. ^ Emanuel, G. (2001). Analytical fluid dynamics (second ed.). CRC Press. pp. 6–7. ISBN 0-8493-9114-8.
  11. ^ Eric W. Weisstein. "Convective Operator". MathWorld. Retrieved 2008-07-22.

Further reading

This page was last edited on 21 March 2024, at 20:41
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.