To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

Markov theorem

From Wikipedia, the free encyclopedia

Braid closure

In mathematics the Markov theorem gives necessary and sufficient conditions for two braids to have closures that are equivalent knots or links. The conditions are stated in terms of the group structures on braids.

Braids are algebraic objects described by diagrams; the relation to topology is given by Alexander's theorem which states that every knot or link in three-dimensional Euclidean space is the closure of a braid. The Markov theorem, proved by Russian mathematician Andrei Andreevich Markov Jr.[1] describes the elementary moves generating the equivalence relation on braids given by the equivalence of their closures.

More precisely Markov's theorem can be stated as follows:[2][3] given two braids represented by elements in the braid groups , their closures are equivalent links if and only if can be obtained from applying to a sequence of the following operations:

  1. conjugating in ;
  2. replacing by (here are the standard generators of the braid groups; geometrically this amounts to adding a strand to the right of the braid diagram and twisting it once with the (previously) last strand);
  3. the inverse of the previous operation (if with replace with ).

References

  1. ^ A. A. Markov Jr., Über die freie Äquivalenz der geschlossenen Zöpfe
  2. ^ Birman, Joan (1974). Braids, Links, and Mapping Class Groups. Annals of Mathematics Studies. Vol. 82. Princeton University Press., Theorem 2.3 on p. 51
  3. ^ Kauffman, Louis (1991). Knots and Physics. World Scientific., p.95
This page was last edited on 16 January 2024, at 14:13
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.