To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

Markov chain geostatistics

From Wikipedia, the free encyclopedia

Markov chain geostatistics uses Markov chain spatial models, simulation algorithms and associated spatial correlation measures (e.g., transiogram) based on the Markov chain random field theory, which extends a single Markov chain into a multi-dimensional random field for geostatistical modeling. A Markov chain random field is still a single spatial Markov chain. The spatial Markov chain moves or jumps in a space and decides its state at any unobserved location through interactions with its nearest known neighbors in different directions. The data interaction process can be well explained as a local sequential Bayesian updating process within a neighborhood. Because single-step transition probability matrices are difficult to estimate from sparse sample data and are impractical in representing the complex spatial heterogeneity of states, the transiogram, which is defined as a transition probability function over the distance lag, is proposed as the accompanying spatial measure of Markov chain random fields.

YouTube Encyclopedic

  • 1/3
    Views:
    2 347
    1 604
    1 890
  • Geospatial Analysis with Python
  • Impact Acceleration: Astrostatistics
  • NIPS 2011 Tutorial: Flexible, Multivariate Point Process Models for Unlocking the Neural Code

Transcription

References

  1. Li, W. 2007. Markov chain random fields for estimation of categorical variables. Math. Geol., 39(3): 321–335.
  2. Li, W. et al. 2015. Bayesian Markov chain random field cosimulation for improving land cover classification accuracy. Math. Geosci., 47(2): 123–148.
  3. Li, W., and C. Zhang. 2019. Markov chain random fields in the perspective of spatial Bayesian networks and optimal neighborhoods for simulation of categorical fields. Computational Geosciences, 23(5): 1087-1106.
  4. http://gisweb.grove.ad.uconn.edu/weidong/Markov_chain_spatial_statistics.htm
This page was last edited on 12 September 2021, at 15:05
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.