To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

Mariotte's bottle

From Wikipedia, the free encyclopedia

Diagram of Mariotte's bottle
Mariotte's bottle

Mariotte's bottle is a device that delivers a constant rate of flow from closed bottles or tanks. It is named after French physicist Edme Mariotte (1620-1684). A picture of a bottle with a gas inlet is shown in the works of Mariotte,[1] but this construction was made to show the effect of outside pressure on mercury level inside the bottle. It further misses a siphon or an outlet for the liquid.

YouTube Encyclopedic

  • 1/3
    Views:
    1 079
    907 094
    2 255
  • Mariotte siphon (constant flow-rate device)
  • Siphon Water Pump Experiment
  • Mariotte's Bottle. قنينة ماريوت

Transcription

Invention

The design was first reported by McCarthy (1934).[2] As shown in the diagram, a stoppered reservoir is supplied with an air inlet and a siphon. The pressure at the bottom of the air inlet is always the same as the pressure outside the reservoir, i.e. the atmospheric pressure. If it were greater, air would not enter. If the entrance to the siphon is at the same depth, then it will always supply the water at atmospheric pressure and will deliver a flow under constant head height, regardless of the changing water level within the reservoir.

This apparatus has many variations in design and has been used extensively when a constant water pressure is needed, e.g. supplying water at constant head for measuring water infiltration into soil or supplying the mobile phase in chromatography.

The drawback of the design is that it is sensitive for gas inlet leakage and that during operation liquid cannot be added, since it would change the pressure control. Accurate control is nowadays provided by electronic devices.

Applications

Constant head is important in simplifying constraint when measuring the movement of water in soil. Several measurement techniques employ the Mariotte's bottle to provide constant head. The Guelph Permeameter measures unsaturated hydraulic conductivity in the field and uses this principle to create a constant head.[3] Single and double ring infiltrometers can also use the Marriotte's bottle.[4]

Another application is a similar arrangement in some fuel tanks used in control line model airplanes, where it is called a "uniflow" tank, where the tank venting tubing goes to the end of the prismatic tank, close to the fuel pick-up tube that feeds the engine; thus, when fuel is consumed, the uniflow tank supplies approximately the same pressure, regardless of the quantity of fuel that remains in the tank for the rest of the flight, which keeps the same carburetor calibration and air-fuel ratio.

See also

References

  1. ^ Œuvres de Mariotte (2 volumes, 1717). Réédition : J. Peyroux, Bordeaux, 2001. Documentation service University of Strassbourg Archived 2012-05-17 at the Wayback Machine and Google books.
  2. ^ McCarthy, E.L., 1934. Mariotte's Bottle. Science, 80:100.
  3. ^ Reynolds, W. D., 1993. Chapter 59, Unsaturated Hydraulic Conductivity: Field Measurement.Pages 633-644 in M.R. Cater, Ed. Soil Sampling and Methods of Analysis, Canadian Society of Soil Science
  4. ^ Herrick, J. E., Van Zee J.W., Havstad, K.M., Burkett, L.M., Whitford, W.G. Monitoring Manual for Grassland, Shrubland and Savanna Ecosystems, Volume II: Design, Supplementary Methods, and Interpretation. Chapter 8, Single-ring infiltrometer (for water infiltration). https://jornada.nmsu.edu/files/Volume_II.pdf#page=141

Further reading

External links

This page was last edited on 2 November 2023, at 13:19
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.