To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.

Marchenko–Pastur distribution

From Wikipedia, the free encyclopedia

Marchenko-Pastur distribution.svg

In the mathematical theory of random matrices, the Marchenko–Pastur distribution, or Marchenko–Pastur law, describes the asymptotic behavior of singular values of large rectangular random matrices. The theorem is named after Ukrainian mathematicians Vladimir Marchenko and Leonid Pastur who proved this result in 1967.

If denotes a random matrix whose entries are independent identically distributed random variables with mean 0 and variance , let

and let be the eigenvalues of (viewed as random variables). Finally, consider the random measure

Theorem. Assume that so that the ratio . Then (in weak* topology in distribution), where



The Marchenko–Pastur law also arises as the free Poisson law in free probability theory, having rate and jump size .

YouTube Encyclopedic

  • 1/4
    15 468
  • ✪ The Randomness of Correlation and its Hacking by Bigdataists
  • ✪ Covariance Matrix Estimation for the Cryo-EM Heterogeneity Problem | Amit Singer
  • ✪ Seminar 9: Surya Ganguli - Statistical Physics of Deep Learning
  • ✪ Lecture 9.2: Haim Sompolinksy - Sensory Representations in Deep Networks


See also


  • Götze, F.; Tikhomirov, A. (2004). "Rate of convergence in probability to the Marchenko–Pastur law". Bernoulli. 10 (3): 503–548. doi:10.3150/bj/1089206408.
  • Marchenko, V. A.; Pastur, L. A. (1967). "Распределение собственных значений в некоторых ансамблях случайных матриц" [Distribution of eigenvalues for some sets of random matrices]. Mat. Sb. N.S. (in Russian). 72 (114:4): 507–536. doi:10.1070/SM1967v001n04ABEH001994. Link to free-access pdf of Russian version
  • Nica, A.; Speicher, R. (2006). Lectures on the Combinatorics of Free probability theory. Cambridge Univ. Press. pp. 204, 368. ISBN 0-521-85852-6. Link to free download Another free access site
This page was last edited on 30 August 2019, at 20:54
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.