To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
Languages
Recent
Show all languages
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

Enumerator polynomial

From Wikipedia, the free encyclopedia

In coding theory, the weight enumerator polynomial of a binary linear code specifies the number of words of each possible Hamming weight.

Let be a binary linear code length . The weight distribution is the sequence of numbers

giving the number of codewords c in C having weight t as t ranges from 0 to n. The weight enumerator is the bivariate polynomial

Basic properties

MacWilliams identity

Denote the dual code of by

(where denotes the vector dot product and which is taken over ).

The MacWilliams identity states that

The identity is named after Jessie MacWilliams.

Distance enumerator

The distance distribution or inner distribution of a code C of size M and length n is the sequence of numbers

where i ranges from 0 to n. The distance enumerator polynomial is

and when C is linear this is equal to the weight enumerator.

The outer distribution of C is the 2n-by-n+1 matrix B with rows indexed by elements of GF(2)n and columns indexed by integers 0...n, and entries

The sum of the rows of B is M times the inner distribution vector (A0,...,An).

A code C is regular if the rows of B corresponding to the codewords of C are all equal.

References

  • Hill, Raymond (1986). A first course in coding theory. Oxford Applied Mathematics and Computing Science Series. Oxford University Press. pp. 165–173. ISBN 0-19-853803-0.
  • Pless, Vera (1982). Introduction to the theory of error-correcting codes. Wiley-Interscience Series in Discrete Mathematics. John Wiley & Sons. pp. 103–119. ISBN 0-471-08684-3.
  • J.H. van Lint (1992). Introduction to Coding Theory. GTM. Vol. 86 (2nd ed.). Springer-Verlag. ISBN 3-540-54894-7. Chapters 3.5 and 4.3.
This page was last edited on 24 October 2023, at 01:35
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.