To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

From Wikipedia, the free encyclopedia

In mathematics, the Lyapunov time is the characteristic timescale on which a dynamical system is chaotic. It is named after the Russian mathematician Aleksandr Lyapunov. It is defined as the inverse of a system's largest Lyapunov exponent.[1]

YouTube Encyclopedic

  • 1/3
    Views:
    6 316
    241 216
    15 113 051
  • Lyapunov Exponents & Sensitive Dependence on Initial Conditions
  • Lyapunov's Fractal (that Lyapunov knew nothing about) #SoME2
  • This equation will change how you see the world (the logistic map)

Transcription

Use

The Lyapunov time mirrors the limits of the predictability of the system. By convention, it is defined as the time for the distance between nearby trajectories of the system to increase by a factor of e. However, measures in terms of 2-foldings and 10-foldings are sometimes found, since they correspond to the loss of one bit of information or one digit of precision respectively.[2][3]

While it is used in many applications of dynamical systems theory, it has been particularly used in celestial mechanics where it is important for the problem of the stability of the Solar System. However, empirical estimation of the Lyapunov time is often associated with computational or inherent uncertainties.[4][5]

Examples

Typical values are:[2]

System Lyapunov time
Pluto's orbit 20 million years
Solar System 5 million years
Axial tilt of Mars 1–5 million years
Orbit of 36 Atalante 4,000 years
Rotation of Hyperion 36 days
Chemical chaotic oscillations 5.4 minutes
Hydrodynamic chaotic oscillations 2 seconds
1 cm3 of argon at room temperature 3.7×10−11 seconds
1 cm3 of argon at triple point (84 K, 69 kPa) 3.7×10−16 seconds

See also

References

  1. ^ Bezruchko, Boris P.; Smirnov, Dmitry A. (5 September 2010). Extracting Knowledge from Time Series: An Introduction to Nonlinear Empirical Modeling. Springer. pp. 56–57. ISBN 9783642126000.
  2. ^ a b Pierre Gaspard, Chaos, Scattering and Statistical Mechanics, Cambridge University Press, 2005. p. 7
  3. ^ Friedland, G.; Metere, A. (2018). "Isomorphism between Maximum Lyapunov Exponent and Shannon's Channel Capacity". arXiv:1706.08638. {{cite journal}}: Cite journal requires |journal= (help)
  4. ^ Tancredi, G.; Sánchez, A.; Roig, F. (2001). "A Comparison Between Methods to Compute Lyapunov Exponents". The Astronomical Journal. 121 (2): 1171–1179. Bibcode:2001AJ....121.1171T. doi:10.1086/318732.
  5. ^ Gerlach, E. (2009). "On the Numerical Computability of Asteroidal Lyapunov Times". arXiv:0901.4871. {{cite journal}}: Cite journal requires |journal= (help)
This page was last edited on 4 August 2023, at 23:59
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.