To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

From Wikipedia, the free encyclopedia

Loop entropy is the entropy lost upon bringing together two residues of a polymer within a prescribed distance. For a single loop, the entropy varies logarithmically with the number of residues in the loop

where is the Boltzmann constant and is a coefficient that depends on the properties of the polymer. This entropy formula corresponds to a power-law distribution for the probability of the residues contacting.

The loop entropy may also vary with the position of the contacting residues. Residues near the ends of the polymer are more likely to contact (quantitatively, have a lower ) than those in the middle (i.e., far from the ends), primarily due to excluded volume effects.

YouTube Encyclopedic

  • 1/1
    Views:
    375
  • Chapter 2b: The Catalan Garden

Transcription

Wang-Uhlenbeck entropy

The loop entropy formula becomes more complicated with multiples loops, but may be determined for a Gaussian polymer using a matrix method developed by Wang and Uhlenbeck. Let there be contacts among the residues, which define loops of the polymers. The Wang-Uhlenbeck matrix is an symmetric, real matrix whose elements equal the number of common residues between loops and . The entropy of making the specified contacts equals

As an example, consider the entropy lost upon making the contacts between residues 26 and 84 and residues 58 and 110 in a polymer (cf. ribonuclease A). The first and second loops have lengths 58 (=84-26) and 52 (=110-58), respectively, and they have 26 (=84-58) residues in common. The corresponding Wang-Uhlenbeck matrix is

whose determinant is 2340. Taking the logarithm and multiplying by the constants gives the entropy.

References

  • Wang, M. C., & Uhlenbeck, G. E. (1945). On the theory of the Brownian motion II. Reviews of Modern Physics, 17(2-3), 323.[1]


This page was last edited on 19 July 2022, at 12:15
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.