To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.

Logical equivalence

From Wikipedia, the free encyclopedia

In logic and mathematics, statements and are said to be logically equivalent if they have the same truth value in every model.[1] The logical equivalence of and is sometimes expressed as , , , or , depending on the notation being used. However, these symbols are also used for material equivalence, so proper interpretation would depend on the context. Logical equivalence is different from material equivalence, although the two concepts are intrinsically related.

YouTube Encyclopedic

  • 1/5
    125 346
    40 016
    216 070
    28 288
    26 423
  • Propositional Logic − Logical Equivalences
  • 3 Ways to Show a Logical Equivalence | Ex: DeMorgan's Laws
  • Logical Equivalence of Two Statements
  • Logical Equivalence with solved examples in Discrete Mathematics in Hindi


Logical equivalences

In logic, many common logical equivalences exist and are often listed as laws or properties. The following tables illustrate some of these.

General logical equivalences

Equivalence Name

Identity laws

Domination laws

Idempotent or tautology laws
Double negation law

Commutative laws

Associative laws

Distributive laws

De Morgan's laws

Absorption laws

Negation laws

Logical equivalences involving conditional statements

Logical equivalences involving biconditionals


In logic

The following statements are logically equivalent:

  1. If Lisa is in Denmark, then she is in Europe (a statement of the form ).
  2. If Lisa is not in Europe, then she is not in Denmark (a statement of the form ).

Syntactically, (1) and (2) are derivable from each other via the rules of contraposition and double negation. Semantically, (1) and (2) are true in exactly the same models (interpretations, valuations); namely, those in which either Lisa is in Denmark is false or Lisa is in Europe is true.

(Note that in this example, classical logic is assumed. Some non-classical logics do not deem (1) and (2) to be logically equivalent.)

Relation to material equivalence

Logical equivalence is different from material equivalence. Formulas and are logically equivalent if and only if the statement of their material equivalence () is a tautology.[2]

The material equivalence of and (often written as ) is itself another statement in the same object language as and . This statement expresses the idea "' if and only if '". In particular, the truth value of can change from one model to another.

On the other hand, the claim that two formulas are logically equivalent is a statement in metalanguage, which expresses a relationship between two statements and . The statements are logically equivalent if, in every model, they have the same truth value.

See also


  1. ^ Mendelson, Elliott (1979). Introduction to Mathematical Logic (2 ed.). pp. 56. ISBN 9780442253073.
  2. ^ Copi, Irving; Cohen, Carl; McMahon, Kenneth (2014). Introduction to Logic (New International ed.). Pearson. p. 348.
This page was last edited on 7 July 2023, at 23:33
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.