To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

Logarithmic decrement

From Wikipedia, the free encyclopedia

The logarithmic decrement can be obtained e.g. as ln(x1/x3).

Logarithmic decrement, , is used to find the damping ratio of an underdamped system in the time domain.

The method of logarithmic decrement becomes less and less precise as the damping ratio increases past about 0.5; it does not apply at all for a damping ratio greater than 1.0 because the system is overdamped.

YouTube Encyclopedic

  • 1/3
    Views:
    35 444
    27 719
    2 918
  • Logarithmic Decrement
  • Logarithmic Decrement Summary
  • Logarithmic Decrement Example

Transcription

Method

The logarithmic decrement is defined as the natural log of the ratio of the amplitudes of any two successive peaks:

where x(t) is the overshoot (amplitude - final value) at time t and x(t + nT) is the overshoot of the peak n periods away, where n is any integer number of successive, positive peaks.

The damping ratio is then found from the logarithmic decrement by:

Thus logarithmic decrement also permits evaluation of the Q factor of the system:

The damping ratio can then be used to find the natural frequency ωn of vibration of the system from the damped natural frequency ωd:

where T, the period of the waveform, is the time between two successive amplitude peaks of the underdamped system.

Simplified variation

The damping ratio can be found for any two adjacent peaks. This method is used when n = 1 and is derived from the general method above:

where x0 and x1 are amplitudes of any two successive peaks.

For system where (not too close to the critically damped regime, where ).

Method of fractional overshoot

The method of fractional overshoot can be useful for damping ratios between about 0.5 and 0.8. The fractional overshoot OS is:

where xp is the amplitude of the first peak of the step response and xf is the settling amplitude. Then the damping ratio is

See also

References

  • Inman, Daniel J. (2008). Engineering Vibration. Upper Saddle, NJ: Pearson Education, Inc. pp. 43–48. ISBN 978-0-13-228173-7.
This page was last edited on 21 February 2023, at 15:10
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.