To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
Languages
Recent
Show all languages
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

Locus control region

From Wikipedia, the free encyclopedia

A locus control region (LCR) is a long-range cis-regulatory element that enhances expression of linked genes at distal chromatin sites. It functions in a copy number-dependent manner and is tissue-specific, as seen in the selective expression of β-globin genes in erythroid cells.[1] Expression levels of genes can be modified by the LCR and gene-proximal elements, such as promoters, enhancers, and silencers. The LCR functions by recruiting chromatin-modifying, coactivator, and transcription complexes.[2] Its sequence is conserved in many vertebrates, and conservation of specific sites may suggest importance in function.[2] It has been compared to a super-enhancer as both perform long-range cis regulation via recruitment of the transcription complex.[3]

YouTube Encyclopedic

  • 1/3
    Views:
    189 294
    85 985
    210 737
  • Regulation of transcription | Biomolecules | MCAT | Khan Academy
  • Gene regulation in eukaryotes
  • Regulated Transcription

Transcription

Voiceover: So what makes a cell that's located inside of your nose responsible for smelling, say, a slice of pizza look and act differently from a cell that lines your gut and is responsible for absorbing the nutrients from that pizza? They have the exact same DNA so the differences can't be attributed to that fact alone. The answer actually lies in the expression of that DNA, which genes are actively transcribed and which ones aren't and there are several ways in which gene regulation occurs at the level of transcription and so we're going to be talking about the main ones here. Now let's draw out a hypothetical gene here and associated with this gene is a sequence upstream so towards the three prime region of the antisense strand, also called the template strand. And this sequence is called the promoter and there is another sequence in between the promoter and the gene called the operator. The operator is the sequence of DNA to which a transcription factor protein combined and the promoter is the sequence of DNA to which the RNA polymerase binds to start transcription. Now first off in prokaryotes we have what are called general transcription factors, which are a class of proteins that bind to specific sites on DNA to activate transcription. General transcription factors plus RNA polymerase and another protein complex called the mediator multiple protein complex constitute the basic transcriptional apparatus, which positions RNA polymerase right at the start of a protein coding sequence or a gene and then releases the polymerase to transcribe the messenger RNA from that DNA template. Now there's another type of DNA binding protein called activators and these enhance the interaction between RNA polymerase and a particular promoter, encouraging the expression of the gene and activators can do this by increasing the attraction of RNA polymerase for the promoter through interactions with sub units of the RNA polymerase or indirectly by changing the structure of the DNA. An example of an activator is the catabolite activator protein or CAP and this protein activates transcription of the lac operon in E. coli. In the case of the lac operaon and E. coli, cyclic adenosine monophosphate or cAMP is produced during glucose starvation and so this cAMP actually binds to the catabolite activator protein or CAP which causes a confirmational change that allows the CAP protein to bind to a DNA site located adjacent to the promoter and then this activator, the CAP, then makes a direct protein to protein interaction with RNA polymerase that recruits the RNA polymerase to the promoter. Now enhancers are sites on the DNA that are bound to by activators in order to loop the DNA in a certain way that brings a specific promoter to the initiation complex and as the name implies this enhances transcription of the genes in a particular gene cluster. And while enhancers are usually what are called cis-acting, cis meaning the same or acting on the same chromosome, an enhancer doesn't necessarily need to be particularly close to the gene that it acts on and sometimes it's not even located on the same chromosome. Enhancers don't act on the promoter region itself, but are actually bound by activator proteins and these activator proteins can interact with that mediator complex I mentioned earlier which recruits RNA polymerase and the general transcription factors which then can lead to transcription of the genes. So here I've drawn a little schematic of what it might look like to have the enhancer actually change the structure of the DNA so that the DNA is now looping around. Here you still have your promoter sequence, the operator sequence, the gene sequence, and the enhancer sequence, and having the DNA looped in such a way so that you could then recruit RNA polymerase, the transcription factors, the mediator protein complex, and then you have transcription begin of this gene here. Now let's talk about repressors. Repressors are proteins that bind to the operator, impending RNA polymerase progress on the strand and thus impeding the expression of the gene. Now if an inducer, which is a molecule that initiates gene expression, is present, then it can actually interact with the repressor protein in such a way that causes it to detach from the operator and then this frees up RNA polymerase to then transcribe the gene further down on the DNA strand. One example of a repressor protein is the repressor protein associated again with the lac operon operator, which prevents the transcription of genes used in lactose metabolism unless lactose, which is the inducer molecule, is present as an alternative energy source. Now silencers are regions of DNA that are bound by repressor proteins in order to silence gene expression and this mechanism is very similar to that of the enhancer sequences that I just talked about. And similarly, silencers can be located several bases upstream or downstream from the actual promoter of the gene and when a repressor protein binds to the silencer region of the DNA, RNA polymerase is prevented from binding to the promoter region. Now a few notes about the differences between prokaryotes and eukaryotes when it comes to transcriptional regulation. In prokaryotes, the regulation of transcription is really needed for the cell to be able to quickly adapt to the ever-changing outer environment that it is sitting in. The presence, the quantity, the type of nutrients actually determines which genes are expressed and in order to do that, genes must be regulated in some sort of fashion so a combination of activators, repressors, and rarely enhancers, at least in the case of prokaryotes, determines whether a gene is transcribed. In eukaryotes, transcriptional regulation tends to involve a combination of interactions between several transcription factors which allows for a more sophisticated response to multiple conditions in the environment. And another major difference between eukaryotes and prokaryotes is the fact that eukaryotes have a nuclear envelope which prevents the simultaneous transcription and translation of a particular gene and this adds an extra spacial and temporal control of gene expression.

History

The β-globin LCR was identified over 20 years ago in studies of transgenic mice. These studies determined that the LCR was required for normal regulation of beta-globin gene expression.[4] Evidence of the presence of this additional regulatory element came from a group of patients that lacked a 20 kb region upstream of the β-globin cluster that was vital for expression of any of the β-globin genes. Even though all of the genes themselves and the other regulatory elements were intact, without this domain, none of the genes in the β-globin cluster were expressed.[5]

Examples

Although the name implies that the LCR is limited to a single region, this implication only applies to the β-globin LCR (HBB-LCR). Other studies have found that a single LCR can be distributed in multiple areas around and inside the genes it controls. The β-globin LCR in mice and humans is found 6–22 kb upstream of the first globin gene (epsilon). It controls the following genes:[1][2]

  • HBE1, hemoglobin subunit epsilon (embryonic)
  • HBG2, hemoglobin subunit gamma-2 (fetal)
  • HBG1, hemoglobin subunit gamma-1 (fetal)
  • HBD, hemoglobin subunit delta (adult)
  • HBB, hemoglobin subunit beta (adult)

There is an opsin LCR (OPSIN-LCR) controlling the expression of OPN1LW and the first copies of OPN1MW on the human X chromosome, upstream of these genes.[6] A dysfunctional LCR can cause loss of expression of both opsins, leading to blue cone monochromacy.[7] This LCR is also conserved in teleost fishes including zebrafish.[8]

As of 2002, there are 21 LCR areas known in human.[1] As of 2019, 11 human LCRs are recorded in the NCBI database.[9]

Proposed models of LCR function

Although studies have been conducted to attempt to identify a model of how the LCR functions, evidence for the following models is not strongly supported or precluded.[1]

Looping model

Transcription factors bind to hypersensitive site cores and cause the LCR to form a loop that can interact with the promoter of the gene it regulates.[1]

Tracking model

Transcription factors bind to the LCR to form a complex. The complex moves along the DNA helix until it can bind to the promoter of the gene it regulates. Once bound, the transcriptional apparatus increases gene expression.[1]

Facilitated tracking model

This hypothesis combines the looping and tracking models, suggesting that the transcription factors bind to the LCR to form a loop, which then seeks and binds to the promoter of the gene it regulates.[1]

Linking model

Transcription factors bind to DNA from the LCR to the promoter in an orderly fashion using non-DNA-binding proteins and chromatin modifiers. This changes chromatin conformation to expose the transcriptional domain.[1]

Diseases related to the LCR

Studies in transgenic mice have shown that deletion of the β-globin LCR causes the region of chromosome to condense into a heterochromatic state.[1][2] This leads to decreased expression of β-globin genes, which can cause β-thalassemia in humans and mice.

References

  1. ^ a b c d e f g h i Li Q, Peterson KR, Fang X, Stamatoyannopoulos G (November 2002). "Locus control regions". Blood. 100 (9): 3077–86. doi:10.1182/blood-2002-04-1104. PMC 2811695. PMID 12384402.
  2. ^ a b c d Levings PP, Bungert J (March 2002). "The human beta-globin locus control region". European Journal of Biochemistry. 269 (6): 1589–99. doi:10.1046/j.1432-1327.2002.02797.x. PMID 11895428.
  3. ^ Gurumurthy A, Shen Y, Gunn EM, Bungert J (January 2019). "Phase Separation and Transcription Regulation: Are Super-Enhancers and Locus Control Regions Primary Sites of Transcription Complex Assembly?". BioEssays. 41 (1): e1800164. doi:10.1002/bies.201800164. PMC 6484441. PMID 30500078.
  4. ^ Gerstein MB, Bruce C, Rozowsky JS, Zheng D, Du J, Korbel JO, et al. (June 2007). "What is a gene, post-ENCODE? History and updated definition". Genome Research. 17 (6): 669–81. doi:10.1101/gr.6339607. PMID 17567988.
  5. ^ Nussbaum R, McInnes R, Willard H (2016). Thompson &Thompson Genetics in Medicine (Eighth ed.). Philadelphia: Elsevier. p. 200.
  6. ^ Deeb SS (June 2006). "Genetics of variation in human color vision and the retinal cone mosaic". Current Opinion in Genetics & Development. 16 (3): 301–7. doi:10.1016/j.gde.2006.04.002. PMID 16647849.
  7. ^ Carroll J, Rossi EA, Porter J, Neitz J, Roorda A, Williams DR, Neitz M (September 2010). "Deletion of the X-linked opsin gene array locus control region (LCR) results in disruption of the cone mosaic". Vision Research. 50 (19): 1989–99. doi:10.1016/j.visres.2010.07.009. PMC 3005209. PMID 20638402.
  8. ^ Tam KJ, Watson CT, Massah S, Kolybaba AM, Breden F, Prefontaine GG, Beischlag TV (November 2011). "Regulatory function of conserved sequences upstream of the long-wave sensitive opsin genes in teleost fishes". Vision Research. 51 (21–22): 2295–303. doi:10.1016/j.visres.2011.09.010. PMID 21971525.
  9. ^ "Search: "locus control region"[title] AND "Homo sapiens"[porgn] AND alive[prop]". NCBI Gene. Retrieved 20 August 2019.
This page was last edited on 3 June 2022, at 22:05
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.