To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

Localization formula for equivariant cohomology

From Wikipedia, the free encyclopedia

In differential geometry, the localization formula states: for an equivariantly closed equivariant differential form on an orbifold M with a torus action and for a sufficient small in the Lie algebra of the torus T,

where the sum runs over all connected components F of the set of fixed points , is the orbifold multiplicity of M (which is one if M is a manifold) and is the equivariant Euler form of the normal bundle of F.

The formula allows one to compute the equivariant cohomology ring of the orbifold M (a particular kind of differentiable stack) from the equivariant cohomology of its fixed point components, up to multiplicities and Euler forms. No analog of such results holds in the non-equivariant cohomology.

One important consequence of the formula is the Duistermaat–Heckman theorem, which states: supposing there is a Hamiltonian circle action (for simplicity) on a compact symplectic manifold M of dimension 2n,

where H is Hamiltonian for the circle action, the sum is over points fixed by the circle action and are eigenvalues on the tangent space at p (cf. Lie group action.)

The localization formula can also computes the Fourier transform of (Kostant's symplectic form on) coadjoint orbit, yielding the Harish-Chandra's integration formula, which in turns gives Kirillov's character formula.

The localization theorem for equivariant cohomology in non-rational coefficients is discussed in Daniel Quillen's papers.

YouTube Encyclopedic

  • 1/1
    Views:
    526
  • Loop Groups, TQFTs, and Algebraic Geometry (Constantin Teleman @ MSRI)

Transcription

Non-abelian localization

The localization theorem states that the equivariant cohomology can be recovered, up to torsion elements, from the equivariant cohomology of the fixed point subset. This does not extend, in verbatim, to the non-abelian action. But there is still a version of the localization theorem for non-abelian actions.

References

  • Atiyah, Michael; Raoul, Bott (1984), "The moment map and equivariant cohomology", Topology, 23 (1): 1–28, doi:10.1016/0040-9383(84)90021-1
  • Liu, Kefeng (2006), "Localization and conjectures from string duality", in Ge, Mo-Lin; Zhang, Weiping (eds.), Differential geometry and physics, Nankai Tracts in Mathematics, vol. 10, World Scientific, pp. 63–105, ISBN 978-981-270-377-4, MR 2322389
  • Meinrenken, Eckhard (1998), "Symplectic surgery and the Spin—Dirac operator", Advances in Mathematics, 134 (2): 240–277, doi:10.1006/aima.1997.1701
  • Quillen, Daniel (1971), "The spectrum of an equivariant cohomology ring, I", Annals of Mathematics, Second Series, 94 (3): 549–572, doi:10.2307/1970770, JSTOR 1970770; Quillen, Daniel (1971), "The spectrum of an equivariant cohomology ring, II", Annals of Mathematics, Second Series, 94 (3): 573–602, doi:10.2307/1970771, JSTOR 1970771


This page was last edited on 20 March 2024, at 03:18
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.