To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
Languages
Recent
Show all languages
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

Lobry de Bruyn–Van Ekenstein transformation

From Wikipedia, the free encyclopedia

In carbohydrate chemistry, the Lobry de Bruyn–Van Ekenstein transformation also known as the Lobry de Bruyn–Alberda van Ekenstein transformation is the base or acid catalyzed transformation of an aldose into the ketose isomer or vice versa, with a tautomeric enediol as reaction intermediate. Ketoses may be transformed into 3-ketoses, etcetera. The enediol is also an intermediate for the epimerization of an aldose or ketose. [1] [2]

The reactions are usually base catalyzed, but can also take place under acid or neutral conditions.[1] A typical rearrangement reaction is that between the aldose glyceraldehyde and the ketose dihydroxyacetone in a chemical equilibrium.

The Lobry de Bruyn–Van Ekenstein transformation is relevant for the industrial production of certain ketoses and was discovered in 1885 by Cornelis Adriaan Lobry van Troostenburg de Bruyn and Willem Alberda van Ekenstein.[3][4][5][6][7][8]

Aldose-ketose transformation

The following scheme describes the interconversion between an aldose and a ketose, where R is any organic residue.

The equilibrium or the reactant to product ratio depends on concentration, solvent, pH and temperature. At equilibrium the aldose and ketose form a mixture which in the case of the glyceraldehyde and dihydroxyacetone is also called glycerose.

A related reaction is the alpha-ketol rearrangement.

Epimerization

The carbon atom at which the initial deprotonation takes place is a stereocenter. If, for example, D-glucose (an Aldose) rearranges to D-fructose, the ketose, the stereochemical configuration is lost in the enol form. In the chemical reaction the enol can be protonated from two faces, resulting in the backformation of glucose or the formation of the epimer D-mannose. The final product is a mix of D-glucose, D-fructose and D-mannose.

References

  1. ^ a b Momcilo Miljkovic Carbohydrates: Synthesis, Mechanisms, and Stereoelectronic Effects 2009 (Google books)
  2. ^ ANGYAL, S.J.: The Lobry de Bruyn–Alberda van Ekenstein transformation and related reactions, in: Glycoscience: epimerisation, isomerisation and rearrangement reactions of carbohydrates, Vol. 215, (Ed.: STÜTZ, A.E.), Springer-Verlag, Berlin, 2001, 1–14
  3. ^ de Bruyn, C. A. Lobry (1895). "Action des alcalis dilués sur les hydrates de carbone I. (Expériences provisoires)" [Action of diluted alkalis on carbohydrates I. (Provisional experiments)]. Recueil des Travaux Chimiques des Pays-Bas (in French). 14 (6): 156–165. doi:10.1002/recl.18950140602.
  4. ^ de Bruyn, C. A. Lobry; Van Ekenstein, W. Alberda (1895). "Action des alcalis sur les sucres, II. Transformation réciproque des uns dans les autres des sucres glucose, fructose et mannose" [Action of alkalis on sugars, II. Reciprocal transformation of the sugars glucose, fructose, and mannose into each other]. Recueil des Travaux Chimiques des Pays-Bas (in French). 14 (7): 203–216. doi:10.1002/recl.18950140703.
  5. ^ de Bruyn, C. A. Lobry; Van Ekenstein, W. Alberda (1896). "Action des alcalis sur les sucres, III. Transformation des sucres sous l'influence de l'hydroxyde de plomb" [Action of alkalis on sugars, III. Transformation of sugars under the influence of lead hydroxide]. Recueil des Travaux Chimiques des Pays-Bas (in French). 15 (3): 92–96. doi:10.1002/recl.18960150306.
  6. ^ de Bruyn, C. A. Lobry; Van Ekenstein, W. Alberda (1897). "Action des alcalis sur les sucres. IV: Remarques générales" [Action of alkalis on sugars. IV: General remarks]. Recueil des Travaux Chimiques des Pays-Bas et de la Belgique (in French). 16 (8): 257–261. doi:10.1002/recl.18970160805.
  7. ^ de Bruyn, C. A. Lobry; Van Ekenstein, W. Alberda (1897). "Action des alcalis sur les sucres. V: Transformation de la galactose. Les tagatoses, et la galtose" [Action of alkalis on sugars. V: Transformation of galactose. Tagatoses and galtose]. Recueil des Travaux Chimiques des Pays-Bas et de la Belgique (in French). 16 (9): 262–273. doi:10.1002/recl.18970160902.
  8. ^ de Bruyn, C. A. Lobry; Van Ekenstein, W. Alberda (1897). "Action des alcalis sur les sucres. VI: La glutose et la pseudo‐fructose" [Action of alkalis on sugars. VI: Glutose and pseudo-fructose]. Recueil des Travaux Chimiques des Pays-Bas et de la Belgique (in French). 16 (9): 274–281. doi:10.1002/recl.18970160903.
This page was last edited on 25 March 2023, at 00:12
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.