To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time. 4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds # List of integrals of inverse hyperbolic functions

The following is a list of indefinite integrals (antiderivatives) of expressions involving the inverse hyperbolic functions. For a complete list of integral formulas, see lists of integrals.

## Inverse hyperbolic sine integration formulas

$\int \operatorname {arsinh} (ax)\,dx=x\operatorname {arsinh} (ax)-{\frac {\sqrt {a^{2}x^{2}+1}}{a}}+C$ $\int x\operatorname {arsinh} (ax)\,dx={\frac {x^{2}\operatorname {arsinh} (ax)}{2}}+{\frac {\operatorname {arsinh} (ax)}{4a^{2}}}-{\frac {x{\sqrt {a^{2}x^{2}+1}}}{4a}}+C$ $\int x^{2}\operatorname {arsinh} (ax)\,dx={\frac {x^{3}\operatorname {arsinh} (ax)}{3}}-{\frac {\left(a^{2}x^{2}-2\right){\sqrt {a^{2}x^{2}+1}}}{9a^{3}}}+C$ $\int x^{m}\operatorname {arsinh} (ax)\,dx={\frac {x^{m+1}\operatorname {arsinh} (ax)}{m+1}}-{\frac {a}{m+1}}\int {\frac {x^{m+1}}{\sqrt {a^{2}x^{2}+1}}}\,dx\quad (m\neq -1)$ $\int \operatorname {arsinh} (ax)^{2}\,dx=2x+x\operatorname {arsinh} (ax)^{2}-{\frac {2{\sqrt {a^{2}x^{2}+1}}\operatorname {arsinh} (ax)}{a}}+C$ $\int \operatorname {arsinh} (ax)^{n}\,dx=x\operatorname {arsinh} (ax)^{n}-{\frac {n{\sqrt {a^{2}x^{2}+1}}\operatorname {arsinh} (ax)^{n-1}}{a}}+n(n-1)\int \operatorname {arsinh} (ax)^{n-2}\,dx$ $\int \operatorname {arsinh} (ax)^{n}\,dx=-{\frac {x\operatorname {arsinh} (ax)^{n+2}}{(n+1)(n+2)}}+{\frac {{\sqrt {a^{2}x^{2}+1}}\operatorname {arsinh} (ax)^{n+1}}{a(n+1)}}+{\frac {1}{(n+1)(n+2)}}\int \operatorname {arsinh} (ax)^{n+2}\,dx\quad (n\neq -1,-2)$ ## Inverse hyperbolic cosine integration formulas

$\int \operatorname {arcosh} (ax)\,dx=x\operatorname {arcosh} (ax)-{\frac {{\sqrt {ax+1}}{\sqrt {ax-1}}}{a}}+C$ $\int x\operatorname {arcosh} (ax)\,dx={\frac {x^{2}\operatorname {arcosh} (ax)}{2}}-{\frac {\operatorname {arcosh} (ax)}{4a^{2}}}-{\frac {x{\sqrt {ax+1}}{\sqrt {ax-1}}}{4a}}+C$ $\int x^{2}\operatorname {arcosh} (ax)\,dx={\frac {x^{3}\operatorname {arcosh} (ax)}{3}}-{\frac {\left(a^{2}x^{2}+2\right){\sqrt {ax+1}}{\sqrt {ax-1}}}{9a^{3}}}+C$ $\int x^{m}\operatorname {arcosh} (ax)\,dx={\frac {x^{m+1}\operatorname {arcosh} (ax)}{m+1}}-{\frac {a}{m+1}}\int {\frac {x^{m+1}}{{\sqrt {ax+1}}{\sqrt {ax-1}}}}\,dx\quad (m\neq -1)$ $\int \operatorname {arcosh} (ax)^{2}\,dx=2x+x\operatorname {arcosh} (ax)^{2}-{\frac {2{\sqrt {ax+1}}{\sqrt {ax-1}}\operatorname {arcosh} (ax)}{a}}+C$ $\int \operatorname {arcosh} (ax)^{n}\,dx=x\operatorname {arcosh} (ax)^{n}-{\frac {n{\sqrt {ax+1}}{\sqrt {ax-1}}\operatorname {arcosh} (ax)^{n-1}}{a}}+n(n-1)\int \operatorname {arcosh} (ax)^{n-2}\,dx$ $\int \operatorname {arcosh} (ax)^{n}\,dx=-{\frac {x\operatorname {arcosh} (ax)^{n+2}}{(n+1)(n+2)}}+{\frac {{\sqrt {ax+1}}{\sqrt {ax-1}}\operatorname {arcosh} (ax)^{n+1}}{a(n+1)}}+{\frac {1}{(n+1)(n+2)}}\int \operatorname {arcosh} (ax)^{n+2}\,dx\quad (n\neq -1,-2)$ ## Inverse hyperbolic tangent integration formulas

$\int \operatorname {artanh} (ax)\,dx=x\operatorname {artanh} (ax)+{\frac {\ln \left(1-a^{2}x^{2}\right)}{2a}}+C$ $\int x\operatorname {artanh} (ax)\,dx={\frac {x^{2}\operatorname {artanh} (ax)}{2}}-{\frac {\operatorname {artanh} (ax)}{2a^{2}}}+{\frac {x}{2a}}+C$ $\int x^{2}\operatorname {artanh} (ax)\,dx={\frac {x^{3}\operatorname {artanh} (ax)}{3}}+{\frac {\ln \left(1-a^{2}x^{2}\right)}{6a^{3}}}+{\frac {x^{2}}{6a}}+C$ $\int x^{m}\operatorname {artanh} (ax)\,dx={\frac {x^{m+1}\operatorname {artanh} (ax)}{m+1}}-{\frac {a}{m+1}}\int {\frac {x^{m+1}}{1-a^{2}x^{2}}}\,dx\quad (m\neq -1)$ ## Inverse hyperbolic cotangent integration formulas

$\int \operatorname {arcoth} (ax)\,dx=x\operatorname {arcoth} (ax)+{\frac {\ln \left(a^{2}x^{2}-1\right)}{2a}}+C$ $\int x\operatorname {arcoth} (ax)\,dx={\frac {x^{2}\operatorname {arcoth} (ax)}{2}}-{\frac {\operatorname {arcoth} (ax)}{2a^{2}}}+{\frac {x}{2a}}+C$ $\int x^{2}\operatorname {arcoth} (ax)\,dx={\frac {x^{3}\operatorname {arcoth} (ax)}{3}}+{\frac {\ln \left(a^{2}x^{2}-1\right)}{6a^{3}}}+{\frac {x^{2}}{6a}}+C$ $\int x^{m}\operatorname {arcoth} (ax)\,dx={\frac {x^{m+1}\operatorname {arcoth} (ax)}{m+1}}+{\frac {a}{m+1}}\int {\frac {x^{m+1}}{a^{2}x^{2}-1}}\,dx\quad (m\neq -1)$ ## Inverse hyperbolic secant integration formulas

$\int \operatorname {arsech} (ax)\,dx=x\operatorname {arsech} (ax)-{\frac {2}{a}}\operatorname {arctan} {\sqrt {\frac {1-ax}{1+ax}}}+C$ $\int x\operatorname {arsech} (ax)\,dx={\frac {x^{2}\operatorname {arsech} (ax)}{2}}-{\frac {(1+ax)}{2a^{2}}}{\sqrt {\frac {1-ax}{1+ax}}}+C$ $\int x^{2}\operatorname {arsech} (ax)\,dx={\frac {x^{3}\operatorname {arsech} (ax)}{3}}-{\frac {1}{3a^{3}}}\operatorname {arctan} {\sqrt {\frac {1-ax}{1+ax}}}-{\frac {x(1+ax)}{6a^{2}}}{\sqrt {\frac {1-ax}{1+ax}}}+C$ $\int x^{m}\operatorname {arsech} (ax)\,dx={\frac {x^{m+1}\operatorname {arsech} (ax)}{m+1}}+{\frac {1}{m+1}}\int {\frac {x^{m}}{(1+ax){\sqrt {\frac {1-ax}{1+ax}}}}}\,dx\quad (m\neq -1)$ ## Inverse hyperbolic cosecant integration formulas

$\int \operatorname {arcsch} (ax)\,dx=x\operatorname {arcsch} (ax)+{\frac {1}{a}}\operatorname {arcoth} {\sqrt {{\frac {1}{a^{2}x^{2}}}+1}}+C$ $\int x\operatorname {arcsch} (ax)\,dx={\frac {x^{2}\operatorname {arcsch} (ax)}{2}}+{\frac {x}{2a}}{\sqrt {{\frac {1}{a^{2}x^{2}}}+1}}+C$ $\int x^{2}\operatorname {arcsch} (ax)\,dx={\frac {x^{3}\operatorname {arcsch} (ax)}{3}}-{\frac {1}{6a^{3}}}\operatorname {arcoth} {\sqrt {{\frac {1}{a^{2}x^{2}}}+1}}+{\frac {x^{2}}{6a}}{\sqrt {{\frac {1}{a^{2}x^{2}}}+1}}+C$ $\int x^{m}\operatorname {arcsch} (ax)\,dx={\frac {x^{m+1}\operatorname {arcsch} (ax)}{m+1}}+{\frac {1}{a(m+1)}}\int {\frac {x^{m-1}}{\sqrt {{\frac {1}{a^{2}x^{2}}}+1}}}\,dx\quad (m\neq -1)$  This page was last edited on 16 March 2020, at 20:24
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.