To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

Leibniz formula for determinants

From Wikipedia, the free encyclopedia

In algebra, the Leibniz formula, named in honor of Gottfried Leibniz, expresses the determinant of a square matrix in terms of permutations of the matrix elements. If is an matrix, where is the entry in the -th row and -th column of , the formula is

where is the sign function of permutations in the permutation group , which returns and for even and odd permutations, respectively.

Another common notation used for the formula is in terms of the Levi-Civita symbol and makes use of the Einstein summation notation, where it becomes

which may be more familiar to physicists.

Directly evaluating the Leibniz formula from the definition requires operations in general—that is, a number of operations asymptotically proportional to factorial—because is the number of order- permutations. This is impractically difficult for even relatively small . Instead, the determinant can be evaluated in operations by forming the LU decomposition (typically via Gaussian elimination or similar methods), in which case and the determinants of the triangular matrices and are simply the products of their diagonal entries. (In practical applications of numerical linear algebra, however, explicit computation of the determinant is rarely required.) See, for example, Trefethen & Bau (1997). The determinant can also be evaluated in fewer than operations by reducing the problem to matrix multiplication, but most such algorithms are not practical.

YouTube Encyclopedic

  • 1/5
    Views:
    27 382
    1 159
    12 479
    1 000
    260 700
  • Leibniz formula for computing determinants | Lecture 30 | Matrix Algebra for Engineers
  • Leibniz Formula for Determinants / Solving 2x2 Determinant of Function (Taglish)
  • Linear Algebra 14TBD: The Direct Algebraic Definition of the Determinant
  • Lec 19 Determinant formulas and cofactors General Formula for determinant n×n
  • How To Find The Determinant of a 4x4 Matrix

Transcription

Formal statement and proof

Theorem. There exists exactly one function which is alternating multilinear w.r.t. columns and such that .

Proof.

Uniqueness: Let be such a function, and let be an matrix. Call the -th column of , i.e. , so that

Also, let denote the -th column vector of the identity matrix.

Now one writes each of the 's in terms of the , i.e.

.

As is multilinear, one has

From alternation it follows that any term with repeated indices is zero. The sum can therefore be restricted to tuples with non-repeating indices, i.e. permutations:

Because F is alternating, the columns can be swapped until it becomes the identity. The sign function is defined to count the number of swaps necessary and account for the resulting sign change. One finally gets:

as is required to be equal to .

Therefore no function besides the function defined by the Leibniz Formula can be a multilinear alternating function with .

Existence: We now show that F, where F is the function defined by the Leibniz formula, has these three properties.

Multilinear:

Alternating:

For any let be the tuple equal to with the and indices switched.

Thus if then .

Finally, :

Thus the only alternating multilinear functions with are restricted to the function defined by the Leibniz formula, and it in fact also has these three properties. Hence the determinant can be defined as the only function with these three properties.

See also

References

  • "Determinant", Encyclopedia of Mathematics, EMS Press, 2001 [1994]
  • Trefethen, Lloyd N.; Bau, David (June 1, 1997). Numerical Linear Algebra. SIAM. ISBN 978-0898713619.
This page was last edited on 12 November 2023, at 11:24
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.