To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

Lefschetz pencil

From Wikipedia, the free encyclopedia

In mathematics, a Lefschetz pencil is a construction in algebraic geometry considered by Solomon Lefschetz, used to analyse the algebraic topology of an algebraic variety V.

Description

A pencil is a particular kind of linear system of divisors on V, namely a one-parameter family, parametrised by the projective line. This means that in the case of a complex algebraic variety V, a Lefschetz pencil is something like a fibration over the Riemann sphere; but with two qualifications about singularity.

The first point comes up if we assume that V is given as a projective variety, and the divisors on V are hyperplane sections. Suppose given hyperplanes H and H′, spanning the pencil — in other words, H is given by L = 0 and H′ by L′= 0 for linear forms L and L′, and the general hyperplane section is V intersected with

Then the intersection J of H with H′ has codimension two. There is a rational mapping

which is in fact well-defined only outside the points on the intersection of J with V. To make a well-defined mapping, some blowing up must be applied to V.

The second point is that the fibers may themselves 'degenerate' and acquire singular points (where Bertini's lemma applies, the general hyperplane section will be smooth). A Lefschetz pencil restricts the nature of the acquired singularities, so that the topology may be analysed by the vanishing cycle method. The fibres with singularities are required to have a unique quadratic singularity, only.[1]

It has been shown that Lefschetz pencils exist in characteristic zero. They apply in ways similar to, but more complicated than, Morse functions on smooth manifolds. It has also been shown that Lefschetz pencils exist in characteristic p for the étale topology.

Simon Donaldson has found a role for Lefschetz pencils in symplectic topology, leading to more recent research interest in them.

See also

References

  • Donaldson, Simon K. (1998). "Lefschetz fibrations in symplectic geometry". Documenta Mathematica (Proceedings of the International Congress of Mathematicians, Vol. II (Berlin, 1998)). Extra Volume II: 309–314. MR 1648081.
  • Griffiths, Phillip; Harris, Joe (1994). Principles of Algebraic Geometry. Wiley Classics Library. Wiley Interscience. p. 509. ISBN 0-471-05059-8.

Notes

External links

This page was last edited on 28 April 2021, at 21:05
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.