To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
Languages
Recent
Show all languages
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

Lamé's theorem

From Wikipedia, the free encyclopedia

Lamé's Theorem is the result of Gabriel Lamé's analysis of the complexity of the Euclidean algorithm. Using Fibonacci numbers, he proved in 1844[1][2] that when looking for the greatest common divisor (GCD) of two integers a and b, the algorithm finishes in at most 5k steps, where k is the number of digits (decimal) of b.[3][4]

Statement

The number of division steps in Euclidean algorithm with entries and is less than times the number of decimal digits of .

Proof

Let be two positive integers. Applying to them the Euclidean algorithm provides two sequences and of positive integers such that, setting and one has

for and

The number n is called the number of steps of the Euclidean algorithm, since it is the number of Euclidean divisions that are performed.

The Fibonacci numbers are defined by and

for

The above relations show that and By induction,

So, if the Euclidean algorithm requires n steps, one has

One has for every integer , where is the Golden ratio. This can be proved by induction, starting with and continuing by using that

So, if n is the number of steps of the Euclidean algorithm, one has

and thus

using

If k is the number of decimal digits of , one has and So,

and, as both members of the inequality are integers,

which is exactly what Lamé's theorem asserts.

As a side result of this proof, one gets that the pairs of integers that give the maximum number of steps of the Euclidean algorithm (for a given size of ) are the pairs of consecutive Fibonacci numbers.

References

  1. ^ Lamé, Gabriel (1844). "Note sur la limite du nombre des divisions dans la recherche du plus grand commun diviseur entre deux nombres entiers". Comptes rendus des séances de l'Académie des Sciences (in French). 19: 867–870.
  2. ^ Shallit, Jeffrey (1994-11-01). "Origins of the analysis of the Euclidean algorithm". Historia Mathematica. 21 (4): 401–419. doi:10.1006/hmat.1994.1031. ISSN 0315-0860.
  3. ^ Weisstein, Eric W. "Lamé's Theorem". mathworld.wolfram.com. Retrieved 2023-05-09.
  4. ^ "Lame's Theorem - First Application of Fibonacci Numbers". www.cut-the-knot.org. Retrieved 2023-05-09.

Bibliography

  • Bach, Eric (1996). Algorithmic number theory. Jeffrey Outlaw Shallit. Cambridge, Mass.: MIT Press. ISBN 0-262-02405-5. OCLC 33164327
  • Carvalho, João Bosco Pitombeira de (1993). Olhando mais de cima: Euclides, Fibonacci e Lamé. Revista do Professor de Matemática, São Paulo, n. 24, p. 32-40, 2 sem.
This page was last edited on 31 October 2023, at 18:23
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.