To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

Lagrange multipliers on Banach spaces

From Wikipedia, the free encyclopedia

In the field of calculus of variations in mathematics, the method of Lagrange multipliers on Banach spaces can be used to solve certain infinite-dimensional constrained optimization problems. The method is a generalization of the classical method of Lagrange multipliers as used to find extrema of a function of finitely many variables.

YouTube Encyclopedic

  • 1/3
    Views:
    1 338
    1 855
    941
  • 12.03. Extremization of the free energy functional variational derivatives
  • Fixed points and stability: two dimensions
  • Shifrin Math 3500 Day 42: Norm of a Linear Map

Transcription

The Lagrange multiplier theorem for Banach spaces

Let X and Y be real Banach spaces. Let U be an open subset of X and let f : UR be a continuously differentiable function. Let g : UY be another continuously differentiable function, the constraint: the objective is to find the extremal points (maxima or minima) of f subject to the constraint that g is zero.

Suppose that u0 is a constrained extremum of f, i.e. an extremum of f on

Suppose also that the Fréchet derivative Dg(u0) : XY of g at u0 is a surjective linear map. Then there exists a Lagrange multiplier λ : YR in Y, the dual space to Y, such that

Since Df(u0) is an element of the dual space X, equation (L) can also be written as

where (Dg(u0))(λ) is the pullback of λ by Dg(u0), i.e. the action of the adjoint map (Dg(u0)) on λ, as defined by

Connection to the finite-dimensional case

In the case that X and Y are both finite-dimensional (i.e. linearly isomorphic to Rm and Rn for some natural numbers m and n) then writing out equation (L) in matrix form shows that λ is the usual Lagrange multiplier vector; in the case n = 1, λ is the usual Lagrange multiplier, a real number.

Application

In many optimization problems, one seeks to minimize a functional defined on an infinite-dimensional space such as a Banach space.

Consider, for example, the Sobolev space and the functional given by

Without any constraint, the minimum value of f would be 0, attained by u0(x) = 0 for all x between −1 and +1. One could also consider the constrained optimization problem, to minimize f among all those uX such that the mean value of u is +1. In terms of the above theorem, the constraint g would be given by

However this problem can be solved as in the finite dimensional case since the Lagrange multiplier is only a scalar.

See also

References

  • Luenberger, David G. (1969). "Local Theory of Constrained Optimization". Optimization by Vector Space Methods. New York: John Wiley & Sons. pp. 239–270. ISBN 0-471-55359-X.
  • Zeidler, Eberhard (1995). Applied functional analysis: Variational Methods and Optimization. Applied Mathematical Sciences 109. Vol. 109. New York, NY: Springer-Verlag. doi:10.1007/978-1-4612-0821-1. ISBN 978-1-4612-0821-1. (See Section 4.14, pp.270–271.)

This article incorporates material from Lagrange multipliers on Banach spaces on PlanetMath, which is licensed under the Creative Commons Attribution/Share-Alike License.

This page was last edited on 22 October 2022, at 23:02
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.