To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

Kuratowski's intersection theorem

From Wikipedia, the free encyclopedia

In mathematics, Kuratowski's intersection theorem is a result in general topology that gives a sufficient condition for a nested sequence of sets to have a non-empty intersection. Kuratowski's result is a generalisation of Cantor's intersection theorem. Whereas Cantor's result requires that the sets involved be compact, Kuratowski's result allows them to be non-compact, but insists that their non-compactness "tends to zero" in an appropriate sense. The theorem is named for the Polish mathematician Kazimierz Kuratowski, who proved it in 1930.

Statement of the theorem

Let (X, d) be a complete metric space. Given a subset A ⊆ X, its Kuratowski measure of non-compactness α(A) ≥ 0 is defined by

Note that, if A is itself compact, then α(A) = 0, since every cover of A by open balls of arbitrarily small diameter will have a finite subcover. The converse is also true: if α(A) = 0, then A must be precompact, and indeed compact if A is closed. Also, if A is a subset of B, then α(A) ≤ α(B). In some sense, the quantity α(A) is a numerical description of "how non-compact" the set A is.

Now consider a sequence of sets An ⊆ X, one for each natural number n. Kuratowski's intersection theorem asserts that if these sets are non-empty, closed, decreasingly nested (i.e. An+1 ⊆ An for each n), and α(An) → 0 as n → ∞, then their infinite intersection

is a non-empty compact set.

The result also holds if one works with the ball measure of non-compactness or the separation measure of non-compactness, since these three measures of non-compactness are mutually Lipschitz equivalent; if any one of them tends to zero as n → ∞, then so must the other two.

References

  • Kuratowski, Kazimierz (1930). "Sur les espaces complets". Fundamenta Mathematicae. 15: 301–309. doi:10.4064/fm-15-1-301-309.
This page was last edited on 9 February 2023, at 02:44
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.