To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
Languages
Recent
Show all languages
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

Kummer's theorem

From Wikipedia, the free encyclopedia

In mathematics, Kummer's theorem is a formula for the exponent of the highest power of a prime number p that divides a given binomial coefficient. In other words, it gives the p-adic valuation of a binomial coefficient. The theorem is named after Ernst Kummer, who proved it in a paper, (Kummer 1852).

Statement

Kummer's theorem states that for given integers n ≥ m ≥ 0 and a prime number p, the p-adic valuation of the binomial coefficient is equal to the number of carries when m is added to n − m in base p.

An equivalent formation of the theorem is as follows:

Write the base- expansion of the integer as , and define to be the sum of the base- digits. Then

The theorem can be proved by writing as and using Legendre's formula.[1]

Examples

To compute the largest power of 2 dividing the binomial coefficient write m = 3 and nm = 7 in base p = 2 as 3 = 112 and 7 = 1112. Carrying out the addition 112 + 1112 = 10102 in base 2 requires three carries:

  1 1 1    
      1 1 2
+   1 1 1 2
  1 0 1 0 2

Therefore the largest power of 2 that divides is 3.

Alternatively, the form involving sums of digits can be used. The sums of digits of 3, 7, and 10 in base 2 are , , and respectively. Then

Multinomial coefficient generalization

Kummer's theorem can be generalized to multinomial coefficients as follows:

See also

References

  1. ^ Mihet, Dorel (December 2010). "Legendre's and Kummer's Theorems Again". Resonance. 15 (12): 1111–1121.
This page was last edited on 5 April 2024, at 21:23
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.