To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
Languages
Recent
Show all languages
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

Karl-Ludwig Kratz

From Wikipedia, the free encyclopedia

Karl-Ludwig Kratz

Karl-Ludwig Kratz (born April 23, 1941, in Jena, Thuringia) is a German nuclear chemist and astrophysicist. He is professor for nuclear chemistry at the Johannes Gutenberg University of Mainz and adjunct professor of physics at the University of Notre Dame in South Bend, Indiana.

One of the main interests of Kratz is the study of nuclear structure of very neutron-rich isotopes. He concentrated on the beta-delayed neutron decay mode, especially the spectroscopy of the emitted neutrons. These isotopes are obtained by nuclear fission or proton induced spallation of heavy elements as uranium. In general, the extremely neutron-rich species of interest are produced together with an overwhelming amount of shorter-lived ones. Therefore, he is developing chemical and physical separation techniques with very high chemical selectivity. These studies are performed in international collaborations at high-flux reactors (Institut Laue-Langevin, France) or accelerator facilities as the CERN in Switzerland or the National Superconducting Cyclotron Laboratory at Michigan State University.

The nuclear structure data are also applied by Kratz to nucleosynthesis, especially the astrophysical r-process. Elemental abundances from Supernova explosions are calculated in close collaboration with Friedrich-Karl Thielemann of the University of Basel. The calculated abundances are then compared to observed stellar abundances. Ultra-metal-poor Population II stars in the Galactic Halo exhibit a scaled-down Solar System r-process abundance pattern. Comparing calculated and observed abundances for elements as the stable europium with radioactive ones (thorium and uranium) the age of these stars can be determined to about 13 billion years (see Sneden's Star, Cayrel's Star, BD +17° 3248, HE 1523-0901).

In 1999 he received the Nuclear Chemistry Award (now Glenn T. Seaborg Award) of the American Chemical Society. In 2014, the American Physical Society rewarded him the Hans A. Bethe Prize.[1]

References

  1. ^ "2014 Hans A. Bethe Prize Recipient". American Physical Society. Retrieved 27 November 2019.
This page was last edited on 6 October 2023, at 23:02
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.