To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

From Wikipedia, the free encyclopedia

Potassium–argon dating, abbreviated K–Ar dating, is a radiometric dating method used in geochronology and archaeology. It is based on measurement of the product of the radioactive decay of an isotope of potassium (K) into argon (Ar). Potassium is a common element found in many materials, such as feldspars, micas, clay minerals, tephra, and evaporites. In these materials, the decay product 40
Ar
is able to escape the liquid (molten) rock but starts to accumulate when the rock solidifies (recrystallizes). The amount of argon sublimation that occurs is a function of the purity of the sample, the composition of the mother material, and a number of other factors. These factors introduce error limits on the upper and lower bounds of dating, so that the final determination of age is reliant on the environmental factors during formation, melting, and exposure to decreased pressure or open air. Time since recrystallization is calculated by measuring the ratio of the amount of 40
Ar
accumulated to the amount of 40
K
remaining. The long half-life of 40
K
allows the method to be used to calculate the absolute age of samples older than a few thousand years.[1]

The quickly cooled lavas that make nearly ideal samples for K–Ar dating also preserve a record of the direction and intensity of the local magnetic field as the sample cooled past the Curie temperature of iron. The geomagnetic polarity time scale was calibrated largely using K–Ar dating.[2]

YouTube Encyclopedic

  • 1/5
    Views:
    68 242
    37 892
    7 520
    971
    424
  • Potassium-argon (K-Ar) dating | Cosmology & Astronomy | Khan Academy
  • K-Ar dating calculation | Life on earth and in the universe | Cosmology & Astronomy | Khan Academy
  • A-Z of Archaeology: 'K - K-Ar Dating' (Potassium - Argon Dating)
  • K-Ar (Ar-Ar) dating
  • 03 Measuring age on earth 04 Potassium argon K Ar dating

Transcription

We know that an element is defined by the number of protons it has. For example, potassium. We look at the periodic table of elements. And I have a snapshot of it, of not the entire table but part of it here. Potassium has 19 protons. And we could write it like this. And this is a little bit redundant. We know that if it's potassium that atom has 19 protons. And we know if an atom has 19 protons it is going to be potassium. Now, we also know that not all of the atoms of a given element have the same number of neutrons. And when we talk about a given element, but we have different numbers of neutrons we call them isotopes of that element. So for example, potassium can come in a form that has exactly 20 neutrons. And we call that potassium-39. And 39, this mass number, it's a count of the 19 protons plus 20 neutrons. And this is actually the most common isotope of potassium. It accounts for, I'm just rounding off, 93.3% of the potassium that you would find on Earth. Now, some of the other isotopes of potassium. You also have potassium-- and once again writing the K and the 19 are a little bit redundant-- you also have potassium-41. So this would have 22 neutrons. 22 plus 19 is 41. This accounts for about 6.7% of the potassium on the planet. And then you have a very scarce isotope of potassium called potassium-40. Potassium-40 clearly has 21 neutrons. And it's very, very, very, very scarce. It accounts for only 0.0117% of all the potassium. But this is also the isotope of potassium that's interesting to us from the point of view of dating old, old rock, and especially old volcanic rock. And as we'll see, when you can date old volcanic rock it allows you to date other types of rock or other types of fossils that might be sandwiched in between old volcanic rock. And so what's really interesting about potassium-40 here is that it has a half-life of 1.25 billion years. So the good thing about that, as opposed to something like carbon-14, it can be used to date really, really, really old things. And every 1.25 billion years-- let me write it like this, that's its half-life-- so 50% of any given sample will have decayed. And 11% will have decayed into argon-40. So argon is right over here. It has 18 protons. So when you think about it decaying into argon-40, what you see is that it lost a proton, but it has the same mass number. So one of the protons must of somehow turned into a neutron. And it actually captures one of the inner electrons, and then it emits other things, and I won't go into all the quantum physics of it, but it turns into argon-40. And 89% turn into calcium-40. And you see calcium on the periodic table right over here has 20 protons. So this is a situation where one of the neutrons turns into a proton. This is a situation where one of the protons turns into a neutron. And what's really interesting to us is this part right over here. Because what's cool about argon, and we study this a little bit in the chemistry playlist, it is a noble gas, it is unreactive. And so when it is embedded in something that's in a liquid state it'll kind of just bubble out. It's not bonded to anything, and so it'll just bubble out and just go out into the atmosphere. So what's interesting about this whole situation is you can imagine what happens during a volcanic eruption. Let me draw a volcano here. So let's say that this is our volcano. And it erupts at some time in the past. So it erupts, and you have all of this lava flowing. That lava will contain some amount of potassium-40. And actually, it'll already contain some amount of argon-40. But what's neat about argon-40 is that while it's lava, while it's in this liquid state-- so let's imagine this lava right over here. It's a bunch of stuff right over here. I'll do the potassium-40. And let me do it in a color that I haven't used yet. I'll do the potassium-40 in magenta. It'll have some potassium-40 in it. I'm maybe over doing it. It's a very scarce isotope. But it'll have some potassium-40 in it. And it might already have some argon-40 in it just like that. But argon-40 is a noble gas. It's not going to bond anything. And while this lava is in a liquid state it's going to be able to bubble out. It'll just float to the top. It has no bonds. And it'll just evaporate. I shouldn't say evaporate. It'll just bubble out essentially, because it's not bonded to anything, and it'll sort of just seep out while we are in a liquid state. And what's really interesting about that is that when you have these volcanic eruptions, and because this argon-40 is seeping out, by the time this lava has hardened into volcanic rock-- and I'll do that volcanic rock in a different color. By the time it has hardened into volcanic rock all of the argon-40 will be gone. It won't be there anymore. And so what's neat is, this volcanic event, the fact that this rock has become liquid, it kind of resets the amount of argon-40 there. So then you're only going to be left with potassium-40 here. And that's why the argon-40 is more interesting, because the calcium-40 won't necessarily have seeped out. And there might have already been calcium-40 here. So it won't necessarily seep out. But the argon-40 will seep out. So it kind of resets it. The volcanic event resets the amount of argon-40. So right when the event happened, you shouldn't have any argon-40 right when that lava actually becomes solid. And so if you fast forward to some future date, and if you look at the sample-- let me copy and paste it. So if you fast forward to some future date, and you see that there is some argon-40 there, in that sample, you know this is a volcanic rock. You know that it was due to some previous volcanic event. You know that this argon-40 is from the decayed potassium-40. And you know that it has decayed since that volcanic event, because if it was there before it would have seeped out. So the only way that this would have been able to get trapped is, while it was liquid it would seep out, but once it's solid it can get trapped inside the rock. And so you know the only way this argon-40 can exist there is by decay from that potassium-40. So you can look at the ratio. So you know for every one of these argon-40's, because only 11% of the decay products are argon-40's, for every one of those you must have on the order of about nine calcium-40's that also decayed. And so for every one of these argon-40's you know that there must have been 10 original potassium-40's. And so what you can do is you can look at the ratio of the number of potassium-40's there are today to the number that there must have been, based on this evidence right over here, to actually date it. And in the next video I'll actually go through the mathematical calculation to show you that you can actually date it. And the reason this is really useful is, you can look at those ratios. And volcanic eruptions aren't happening every day, but if you start looking over millions and millions of years, on that time scale, they're actually happening reasonably frequent. And so let's dig in the ground. So let's say this is the ground right over here. And you dig enough and you see a volcanic eruption, you see some volcanic rock right over there, and then you dig even more. There's another layer of volcanic rock right over there. So this is another layer of volcanic rock. So they're all going to have a certain amount of potassium-40 in it. This is going to have some amount of potassium-40 in it. And then let's say this one over here has more argon-40. This one has a little bit less. And using the math that we're going to do in the next video, let's say you're able to say that this is, using the half-life, and using the ratio of argon-40 that's left, or using the ratio of the potassium-40 left to what you know was there before, you say that this must have solidified 100 million years ago, 100 million years before the present. And you know that this layer right over here solidified. Let's say, you know it solidified about 150 million years before the present. And let's say you feel pretty good that this soil hasn't been dug up and mixed or anything like that. It looks like it's been pretty untouched when you look at these soil samples right over here. And let's say you see some fossils in here. Then, even though carbon-14 dating is kind of useless, really, when you get beyond 50,000 years, you see these fossils in between these two periods. It's a pretty good indicator, if you can assume that this soil hasn't been dug around and mixed, that this fossil is between 100 million and 150 million years old. This event happened. Then you have these fossils got deposited. These animals died, or they lived and they died. And then you had this other volcanic event. So it allows you, even though you're only directly dating the volcanic rock, it allows you, when you look at the layers, to relatively date things in between those layer. So it isn't just about dating volcanic rock. It allows us to date things that are very, very, very old and go way further back in time than just carbon-14 dating.

Decay series

Potassium naturally occurs in 3 isotopes: 39
K
(93.2581%), 40
K
(0.0117%), 41
K
(6.7302%). 39
K
and 41
K
are stable. The 40
K
isotope is radioactive; it decays with a half-life of 1.248×109 years to 40
Ca
and 40
Ar
. Conversion to stable 40
Ca
occurs via electron emission (beta decay) in 89.3% of decay events. Conversion to stable 40
Ar
occurs via electron capture in the remaining 10.7% of decay events.[3]

Argon, being a noble gas, is a minor component of most rock samples of geochronological interest: It does not bind with other atoms in a crystal lattice. When 40
K
decays to 40
Ar
; the atom typically remains trapped within the lattice because it is larger than the spaces between the other atoms in a mineral crystal. But it can escape into the surrounding region when the right conditions are met, such as changes in pressure or temperature. 40
Ar
atoms can diffuse through and escape from molten magma because most crystals have melted and the atoms are no longer trapped. Entrained argon – diffused argon that fails to escape from the magma – may again become trapped in crystals when magma cools to become solid rock again. After the recrystallization of magma, more 40
K
will decay and 40
Ar
will again accumulate, along with the entrained argon atoms, trapped in the mineral crystals. Measurement of the quantity of 40
Ar
atoms is used to compute the amount of time that has passed since a rock sample has solidified.

Despite 40
Ca
being the favored daughter nuclide, it is rarely useful in dating because calcium is so common in the crust, with 40
Ca
being the most abundant isotope. Thus, the amount of calcium originally present is not known and can vary enough to confound measurements of the small increases produced by radioactive decay.

Formula

The ratio of the amount of 40
Ar
to that of 40
K
is directly related to the time elapsed since the rock was cool enough to trap the Ar by the equation:

,

where:

  • t is time elapsed
  • t1/2 is the half-life of 40
    K
  • Kf is the amount of 40
    K
    remaining in the sample
  • Arf is the amount of 40
    Ar
    found in the sample.

The scale factor 0.109 corrects for the unmeasured fraction of 40
K
which decayed into 40
Ca
; the sum of the measured 40
K
and the scaled amount of 40
Ar
gives the amount of 40
K
which was present at the beginning of the elapsed time period. In practice, each of these values may be expressed as a proportion of the total potassium present, as only relative, not absolute, quantities are required.

Obtaining the data

To obtain the content ratio of isotopes 40
Ar
to 40
K
in a rock or mineral, the amount of Ar is measured by mass spectrometry of the gases released when a rock sample is volatilized in vacuum. The potassium is quantified by flame photometry or atomic absorption spectroscopy.

The amount of 40
K
is rarely measured directly. Rather, the more common 39
K
is measured and that quantity is then multiplied by the accepted ratio of 40
K
/39
K
(i.e., 0.0117%/93.2581%, see above).

The amount of 40
Ar
is also measured to assess how much of the total argon is atmospheric in origin.

Assumptions

According to McDougall & Harrison (1999, p. 11) the following assumptions must be true for computed dates to be accepted as representing the true age of the rock:[4]

  • The parent nuclide, 40
    K
    , decays at a rate independent of its physical state and is not affected by differences in pressure or temperature. This is a well-founded major assumption, common to all dating methods based on radioactive decay. Although changes in the electron capture partial decay constant for 40
    K
    possibly may occur at high pressures, theoretical calculations indicate that for pressures experienced within a body the size of the Earth the effects are negligibly small.[1]
  • The 40
    K
    /39
    K
    ratio in nature is constant so the 40
    K
    is rarely measured directly, but is assumed to be 0.0117% of the total potassium. Unless some other process is active at the time of cooling, this is a very good assumption for terrestrial samples.[5]
  • The radiogenic argon measured in a sample was produced by in situ decay of 40
    K
    in the interval since the rock crystallized or was recrystallized. Violations of this assumption are not uncommon. Well-known examples of incorporation of extraneous 40
    Ar
    include chilled glassy deep-sea basalts that have not completely outgassed preexisting 40
    Ar
    *,[6] and the physical contamination of a magma by inclusion of older xenolitic material. The Ar–Ar dating method was developed to measure the presence of extraneous argon.
  • Great care is needed to avoid contamination of samples by absorption of nonradiogenic 40
    Ar
    from the atmosphere. The equation may be corrected by subtracting from the 40
    Ar
    measured value the amount present in the air where 40
    Ar
    is 295.5 times more plentiful than 36
    Ar
    . 40
    Ar
    decayed = 40
    Ar
    measured − 295.5 × 36
    Ar
    measured.
  • The sample must have remained a closed system since the event being dated. Thus, there should have been no loss or gain of 40
    K
    or 40
    Ar
    *, other than by radioactive decay of 40
    K
    . Departures from this assumption are quite common, particularly in areas of complex geological history, but such departures can provide useful information that is of value in elucidating thermal histories. A deficiency of 40
    Ar
    in a sample of a known age can indicate a full or partial melt in the thermal history of the area. Reliability in the dating of a geological feature is increased by sampling disparate areas which have been subjected to slightly different thermal histories.[7]

Both flame photometry and mass spectrometry are destructive tests, so particular care is needed to ensure that the aliquots used are truly representative of the sample. Ar–Ar dating is a similar technique that compares isotopic ratios from the same portion of the sample to avoid this problem.

Applications

Due to the long half-life of 40
K
, the technique is most applicable for dating minerals and rocks more than 100,000 years old. For shorter timescales, it is unlikely that enough 40
Ar
will have had time to accumulate to be accurately measurable. K–Ar dating was instrumental in the development of the geomagnetic polarity time scale.[2] Although it finds the most utility in geological applications, it plays an important role in archaeology. One archeological application has been in bracketing the age of archeological deposits at Olduvai Gorge by dating lava flows above and below the deposits.[8] It has also been indispensable in other early east African sites with a history of volcanic activity such as Hadar, Ethiopia.[8] The K–Ar method continues to have utility in dating clay mineral diagenesis.[9] In 2017, the successful dating of illite formed by weathering was reported.[10] This finding indirectly lead to the dating of the strandflat of Western Norway from where the illite was sampled.[10] Clay minerals are less than 2 μm thick and cannot easily be irradiated for Ar–Ar analysis because Ar recoils from the crystal lattice.

In 2013, the K–Ar method was used by the Mars Curiosity rover to date a rock on the Martian surface, the first time a rock has been dated from its mineral ingredients while situated on another planet.[11][12]

Notes

  1. ^ a b McDougall & Harrison 1999, p. 10
  2. ^ a b McDougall & Harrison 1999, p. 9
  3. ^ ENSDF decay data in the MIRD format for 40
    Ar
    (Report). National Nuclear Data Center. December 2019. Retrieved 29 December 2019.
  4. ^ McDougall & Harrison 1999, p. 11: "As with all isotopic dating methods, there are a number of assumptions that must be fulfilled for a K–Ar age to relate to events in the geological history of the region being studied."
  5. ^ McDougall & Harrison 1999, p. 14
  6. ^ 40
    Ar
    * means radiogenic argon
  7. ^ McDougall & Harrison 1999, pp. 9–12
  8. ^ a b Tattersall 1995
  9. ^ Aronson & Lee 1986
  10. ^ a b Fredin, Ola; Viola, Giulio; Zwingmann, Horst; Sørlie, Ronald; Brönner, Marco; Lie, Jan-Erik; Margrethe Grandal, Else; Müller, Axel; Margeth, Annina; Vogt, Christoph; Knies, Jochen (2017). "The inheritance of a Mesozoic landscape in western Scandinavia". Nature. 8: 14879. Bibcode:2017NatCo...814879F. doi:10.1038/ncomms14879. PMC 5477494. PMID 28452366.
  11. ^ NASA Curiosity: First Mars Age Measurement and Human Exploration Help, Jet Propulsion Laboratory, 9 December 2013
  12. ^ Martian rock-dating technique could point to signs of life in space, University of Queensland, 13 December 2013

References

Further reading

This page was last edited on 5 November 2023, at 13:37
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.