To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
Languages
Recent
Show all languages
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

Jordan–Schur theorem

From Wikipedia, the free encyclopedia

In mathematics, the Jordan–Schur theorem also known as Jordan's theorem on finite linear groups is a theorem in its original form due to Camille Jordan. In that form, it states that there is a function ƒ(n) such that given a finite subgroup G of the group GL(n, C) of invertible n-by-n complex matrices, there is a subgroup H of G with the following properties:

Schur proved a more general result that applies when G is not assumed to be finite, but just periodic. Schur showed that ƒ(n) may be taken to be

((8n)1/2 + 1)2n2 − ((8n)1/2 − 1)2n2.[1]

A tighter bound (for n ≥ 3) is due to Speiser, who showed that as long as G is finite, one can take

ƒ(n) = n! 12n(π(n+1)+1)

where π(n) is the prime-counting function.[1][2] This was subsequently improved by Hans Frederick Blichfeldt who replaced the 12 with a 6. Unpublished work on the finite case was also done by Boris Weisfeiler.[3] Subsequently, Michael Collins, using the classification of finite simple groups, showed that in the finite case, one can take ƒ(n) = (n + 1)! when n is at least 71, and gave near complete descriptions of the behavior for smaller n.

See also

References

  1. ^ a b Curtis, Charles; Reiner, Irving (1962). Representation Theory of Finite Groups and Associative Algebras. John Wiley & Sons. pp. 258–262.
  2. ^ Speiser, Andreas (1945). Die Theorie der Gruppen von endlicher Ordnung, mit Anwendungen auf algebraische Zahlen und Gleichungen sowie auf die Krystallographie, von Andreas Speiser. New York: Dover Publications. pp. 216–220.
  3. ^ Collins, Michael J. (2007). "On Jordan's theorem for complex linear groups". Journal of Group Theory. 10 (4): 411–423. doi:10.1515/JGT.2007.032.
This page was last edited on 17 July 2023, at 12:51
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.