To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

From Wikipedia, the free encyclopedia

Jellyfish
Fossil range: 505–0 Ma
Cambrian – Recent
Pacific sea nettle (Chrysaora fuscescens) at Monterey Bay Aquarium

Scientific classification
Kingdom: Animalia
Phylum: Cnidaria
Subphylum: Medusozoa
Included groups
Scyphozoa — true jellyfish
Cubozoa — box jellyfish
Staurozoa — stalked jellyfish
Hydrozoa — small jellyfish
Cladistically included but traditionally excluded groups
Hydroidolina – some hydrozoa
A flower hat jelly (Olindias formosa) photographed at the Osaka Aquarium Kaiyukan
A flower hat jelly (Olindias formosa) photographed at the Osaka Aquarium Kaiyukan
A moon jelly shown in false color; its overall body plan is radial, but internally it has fourfold symmetry.
A moon jelly shown in false color; its overall body plan is radial, but internally it has fourfold symmetry.
Umbrella jelly, Shedd Aquarium, Chicago

Jellyfish or sea jelly[a] is the informal common name given to the medusa-phase of certain gelatinous members of the subphylum Medusozoa, a major part of the phylum Cnidaria. Jellyfish are mainly free-swimming marine animals with umbrella-shaped bells and trailing tentacles, although a few are not mobile, being anchored to the seabed by stalks. The bell can pulsate to provide propulsion and highly efficient locomotion. The tentacles are armed with stinging cells and may be used to capture prey and defend against predators. Jellyfish have a complex life cycle; the medusa is normally the sexual phase, the planula larva can disperse widely and is followed by a sedentary polyp phase.

Jellyfish are found all over the world, from surface waters to the deep sea. Scyphozoans (the "true jellyfish") are exclusively marine, but some hydrozoans with a similar appearance live in freshwater. Large, often colorful, jellyfish are common in coastal zones worldwide. The medusae of most species are fast growing, mature within a few months and die soon after breeding, but the polyp stage, attached to the seabed, may be much more long-lived. Jellyfish have roamed the seas for at least 500 million years,[2] and possibly 700 million years or more, making them the oldest multi-organ animal group.[3]

Jellyfish are eaten by humans in certain cultures, being considered a delicacy in some Asian countries, where species in the Rhizostomae are pressed and salted to remove excess water. They are also used in research, where the green fluorescent protein, used by some species to cause bioluminescence, has been adapted as a fluorescent marker for genes inserted into other cells or organisms. The stinging cells used by jellyfish to subdue their prey can also injure humans. Many thousands of swimmers are stung every year, with effects ranging from mild discomfort to serious injury or even death; small box jellyfish are responsible for many of these deaths. When conditions are favourable, jellyfish can form vast swarms. These can be responsible for damage to fishing gear by filling fishing nets, and sometimes clog the cooling systems of power and desalination plants which draw their water from the sea.

Taxonomy and evolution

Taxonomy

The subphylum Medusozoa includes all cnidarians with a medusa stage in their life cycle. The basic cycle is egg, planula larva, polyp, medusa, with the medusa being the sexual stage. The polyp stage is sometimes secondarily lost. The subphylum include the major taxa, Scyphozoa (large jellfish), Cubozoa (box jellyfish) and Hydrozoa (small jellyfish), and excludes Anthozoa (corals and sea anemones).[4] This suggests that the medusa form evolved after the polyps.[5] Medusozoans have tetramerous symmetry, with parts in fours or multiples of four.[4]

The phylogenetics of this group are complex and evolving. The Medusozoa and Octocorallia are proposed as sister groups according to research published in 2012. That research also proposes coronate Scyphozoa and Cubozoa as a sister clade to Hydrozoa and discomedusan Scyphozoa, which are themselves sister groups. The Hydroidolina are a sister group to Trachylina. Semaeostomae is paraphyletic with Rhizostomeae. The class Staurozoa was the earliest group of Medusozoa to diverge and the Limnomedusae were the earliest Hydrozoa to diverge.[6]

The four major classes of medusozoan Cnidaria are:

  • Scyphozoa are sometimes called true jellyfish, though they are no more truly jellyfish than the others listed here. They have tetra-radial symmetry. Most have tentacles around the outer margin of the bowl-shaped bell, and long, oral arms around the mouth in the center of the subumbrella.[4]
  • Cubozoa (box jellyfish) have a (rounded) box-shaped bell, and their velarium assists them to swim more quickly. Box jellyfish may be related more closely to scyphozoan jellyfish than either are to the Hydrozoa.[5]
  • Hydrozoa medusae also have tetra-radial symmetry, nearly always have a velum attached just inside the bell margin, do not have oral arms, but a much smaller central manubrium with terminal mouth opening, and are distinguished by the absence of cells in the mesoglea. Hydrozoa show great diversity of lifestyle. Some species maintain the polyp form for their entire life and do not form medusae at all (such as Hydra, which is hence not considered a jellyfish), and a few are entirely medusal and have no polyp form.[4]
  • Staurozoa (stalked jellyfish) are characterized by a medusa form that is generally sessile, oriented upside down and with a stalk emerging from the apex of the "calyx" (bell), which attaches to the substrate. At least some Staurozoa also have a polyp form that alternates with the medusoid portion of the life cycle. Until recently, Staurozoa were classified within the Scyphozoa.[4]

Some other animals are frequently associated with or mistaken for medusa jellyfish.

  • Siphonophorae are an order of hydrozoa which generally live as colonies (for example, free-swimming chains of repeated units, some units similar to polyps or to medusa). They are not considered medusa jellyfish. A well-known example is the Portuguese man o' war.[7]
  • Ctenophores (comb jellies) are a separate phylum from Cnidaria. Their method of propulsion is coordinated movement of thousands of cilia used as paddles, rather than a pulsating bell, although a few species of ctenophores swim by flapping large lobes.[8]
  • Salps are transparent, gelatinous marine organisms that form pelagic colonies like siphonophores. Salps are chordates, and as such are actually more closely related to humans than they are to cnidarians and comb jellies.[9]

There are over 200 species of Scyphozoa, about 50 species of Staurozoa, about 20 species of Cubozoa, and the Hydrozoa includes about 1000–1500 species that produce medusae (and many more hydrozoan species that do not).[10][11] There is general agreement on the different groups, regardless of their absolute rank. Here is one scheme, which includes all groups that produce jellyfish, derived from several expert sources:

Jellyfish taxonomy (phylum Cnidaria: subphylum Medusozoa, excluding Hydroidolina)
Class Subclass Order Suborder Families
Hydrozoa[12][13] Trachylina Limnomedusae Olindiidae, Monobrachiidae, Microhydrulidae, Armorhydridae
Trachymedusae Geryoniidae, Halicreatidae, Petasidae, Ptychogastriidae, Rhopalonematidae
Narcomedusae Cuninidae, Solmarisidae, Aeginidae, Tetraplatiidae
Actinulidae Halammohydridae, Otohydridae
Staurozoa[14] Eleutherocarpida Lucernariidae, Kishinouyeidae, Lipkeidae, Kyopodiidae
Cleistocarpida Depastridae, Thaumatoscyphidae, Craterolophidae
Cubozoa[15] Carybdeidae, Alatinidae, Tamoyidae, Chirodropidae, Chiropsalmidae
Scyphozoa[16][17][18] Coronatae Atollidae, Atorellidae, Linuchidae, Nausithoidae, Paraphyllinidae, Periphyllidae
Semaeostomeae Cyaneidae, Drymonematidae, Pelagiidae, Phacellophoridae, Ulmaridae
Rhizostomeae Cassiopeidae, Catostylidae, Cepheidae, Lobonematidae, Lychnorhizidae, Mastigiidae, Rhizostomatidae, Stomolophidae, Thysanostomatidae, Versurigidae

Fossil history

Fossil jellyfish, Rhizostomites lithographicus, one of the Scypho-medusae, from the Kimmeridgian (late Jurassic, 157 to 152 mya) of Solnhofen, Germany
Fossil jellyfish, Rhizostomites lithographicus, one of the Scypho-medusae, from the Kimmeridgian (late Jurassic, 157 to 152 mya) of Solnhofen, Germany

Since jellyfish have no hard parts, fossils are rare. The oldest conulariid scyphozoans appeared between 635 and 577 mya in the Neoproterozoic of the Lantian formation in China; others are found in the youngest Ediacaran rocks of the Tamengo formation of Brazil, c. 505 mya, through to the Triassic. Cubozoans and hydrozoans appeared in the Cambrian of the Marjum formation in Utah, USA, c. 540 mya.[19]

Phylogeny

The phylogenetic tree is based on analysis of mitochondrial DNA and ribosomal RNA. The Anthozoa (Hexacorallia + Octocorallia) is paraphyletic. The Medusozoa are a clade, but Scyphozoa (Coronatae + Discomedusae) is broken up. Paraphyletic groups are indicated with quotation marks. Jellyfish are not a clade, as they include most of the Medusozoa, barring some of the Hydrozoa.[20][21]

Cnidaria


Hexacorallia (6-symmetric corals, sea anemones)

Coral detail.jpg




Octocorallia (8-symmetric corals)


Medusozoa

Coronatae

(crown jellyfish)

Nausithoe aurea.jpg  

(part of "Scyphozoa")


Staurozoa


Conulariida

Conulariid03.jpg



Stauromedusae (stalked jellyfish)

Haliclystus stejnegeri 1.jpg



Cubozoa


Chirodropidae



Carybdeidae

Carybdea marsupialis screenshot 6.png


 (box jellyfish) 


Discomedusae

Semaeostomeae, inc. Rhizostomae

Phyllorhiza punctata macro II.jpg

(part of "Scyphozoa")
Hydrozoa

Trachylinae 


Limnomedusae

Olindias formosa1.jpg



"Trachymedusae", inc. Narcomedusae

Expl0393 - Flickr - NOAA Photo Library.jpg 


  

Hydroidolina


Filifera

Red-paper-lantern-jellyfish-Karen-Osborn-Smithsonian-Institution.png




Leptothecata

Halecium-muricatum.jpg




Capitata

Millepora tenella, dactilozoides.jpeg




Aplanulata

Hydra-Foto.jpg



Siphonophorae

Portuguese Man-O-War (Physalia physalis).jpg












"Jellyfish"

Etymology

The name jellyfish, in use since 1796,[22] has traditionally been applied to all similar animals including the comb jellies (ctenophores, another phylum).[23][24] Other scientists prefer gelatinous zooplankton for all soft-bodied animals in the water column.[25] Public aquaria often use jellies or sea jellies to avoid the word "fish".[26] In scientific literature, "jelly" and "jellyfish" have been used interchangeably.[27][28] Many sources refer to only scyphozoans as "true jellyfish".[29][30]

A large group of jellyfish that gathers in a small area, or that appears seasonally or in large numbers, as they often do, is called a bloom.[31][32][33] A few species such as Aurelia, the moon jelly, are able to gather actively into a swarm.[34] Linnaeus coined the term medusa for the gelatinous bell with trailing tentacles of many Medusozoa in 1752. The name alludes to the tentacled head of Medusa in Greek mythology.[22]

Anatomy

Anatomy of a scyphozoan jellyfish
Anatomy of a scyphozoan jellyfish

Medusa

The main feature of a scyphozoan jellyfish is the umbrella-shaped bell. This is a hollow structure consisting of a mass of transparent jelly-like matter known as mesoglea, which forms the hydrostatic skeleton of the animal.[4] 95% or more of the mesogloea consists of water,[35] but it also contains collagen and other fibrous proteins, as well as wandering amoebocytes which can engulf debris and bacteria. The mesogloea is contained by the epidermis on the outside and the gastrodermis on the inside. The edge of the bell is often divided into rounded lobes known as lappets, which allow the bell to flex. In the niches between the lappets are sensory organs known as rhopalia, and the margin of the bell often bears tentacles.[4]

On the underside of the bell is the manubrium, a stalk-like structure hanging down from the centre, with the mouth, which also functions as the anus, at its tip. There are often four oral arms connected to the manubrium, streaming away into the water below.[36] The mouth opens into the gastrovascular cavity, where digestion takes place and nutrients are absorbed. This is subdivided by four thick septa into a central stomach and four gastric pockets. The four pairs of gonads are attached to the septa, and close to them four septal funnels open to the exterior, perhaps supplying good oxygenation to the gonads. Near the free edges of the septa, gastric filaments extend into the gastric cavity; these are armed with nematocysts and enzyme-producing cells and play a role in subduing and digesting the prey. In some scyphozoans, the gastric cavity is joined to radial canals which branch extensively and may join a marginal ring canal. Cilia in these canals circulate the fluid in a regular direction.[4]

Discharge mechanism of a nematocyst
Discharge mechanism of a nematocyst

The box jellyfish is largely similar in structure. It has a squarish, box-like bell from each of the four lower corners of which hang a short pedalium or stalk which bears one or more long, slender tentacles. The rim of the bell is folded inwards to form a shelf known as a velarium which restricts the bell's aperture and creates a powerful jet when the bell pulsates, allowing box jellyfish to swim faster than scyphozoans.[4] Hydrozoans are also similar, usually with just four tentacles at the edge of the bell, although many hydrozoans are colonial and may not have a free-living medusal stage. In some species, a non-detachable bud known as a gonophore is formed that contains a gonad but is missing many other medusal features such as tentacles and rhopalia.[4] Staurozoans, or stalked jellyfish, are attached to the substrate by a pedal disk, and resemble a polyp, the oral end of which has partially developed into a medusa with tentacle-bearing lobes and a central manubrium with four-sided mouth.[4]

Most jellyfish do not have specialized systems for osmoregulation, respiration and circulation, and do not have a central nervous system. Nematocysts, which deliver the sting, are located mostly on the tentacles; scyphozoans also have them around the mouth and stomach.[37] Jellyfish do not need a respiratory system because sufficient oxygen diffuses through the epidermis. They have limited control over their movement, but can navigate with the pulsations of the bell-like body; some species are active swimmers most of the time, while others largely drift.[38] The rhopalia contain rudimentary sense organs which are able to detect light, water-borne vibrations, odour and orientation.[4] A loose network of nerves called a "nerve net" is located in the epidermis.[39][40] Although traditionally thought not to have a central nervous system, nerve net concentration and ganglion-like structures could be considered to constitute one in most species.[41] A jellyfish detects various stimuli, and transmits impulses both throughout the nerve net and around a circular nerve ring, to other nerve cells. The rhopalial ganglia contain pacemaker neurones which control swimming rate and direction.[4]

In many species of jellyfish, the rhopalia include ocelli, light-sensitive organs able to tell light from dark. These are generally pigment spot ocelli, which have some of their cells pigmented. The rhopalia are suspended on stalks with heavy crystals at one end, acting like gyroscopes to orient the eyes skyward. Certain jellyfish look upward at the mangrove canopy while making a daily migration from mangrove swamps into the open lagoon, where they feed, and back again.[3] Box jellyfish have more advanced vision than the other groups. Each individual has 24 eyes, two of which are capable of seeing color, and four parallel information processing areas that act in competition,[42] supposedly making them one of the few kinds of animal to have a 360-degree view of its environment.[43]

Diversity

Jellyfish range from about one millimeter in bell height and diameter,[44] to nearly 2 metres (6.6 ft) in bell height and diameter; the tentacles and mouth parts usually extend beyond this bell dimension.[4]

The smallest jellyfish are the peculiar creeping jellyfish in the genera Staurocladia and Eleutheria, which have bell disks from 0.5 mm to a few millimeters in diameter, with short tentacles that extend out beyond this, which these jellyfish use to move across the surface of seaweed or the bottoms of rocky pools.[44] Many of these tiny creeping jellyfish cannot be seen in the field without a hand lens or microscope; they can reproduce asexually by splitting in half (called fission). Other very small jellyfish, which have bells about one millimeter, are the hydromedusae of many species that have just been released from their parent polyps;[45] some of these live only a few minutes before shedding their gametes in the plankton and then dying, while others will grow in the plankton for weeks or months. The hydromedusae Cladonema radiatum and Cladonema californicum are also very small, living for months, yet never growing beyond a few mm in bell height and diameter.[46]

The lion's mane jellyfish (Cyanea capillata) is one of the largest species of jellyfish.
The lion's mane jellyfish (Cyanea capillata) is one of the largest species of jellyfish.

The lion's mane jellyfish, Cyanea capillata, was long-cited as the largest jellyfish, and arguably the longest animal in the world, with fine, thread-like tentacles that may extend up to 36.5 metres (120 ft) long (though most are nowhere near that large).[47][48] They have a moderately painful, but rarely fatal, sting.[49] The increasingly common giant Nomura's jellyfish, Nemopilema nomurai, found in some, but not all years in the waters of Japan, Korea and China in summer and autumn is another candidate for "largest jellyfish", in terms of diameter and weight, since the largest Nomura's jellyfish in late autumn can reach 200 centimetres (79 in) in bell (body) diameter and about 200 kilograms (440 lb) in weight, with average specimens frequently reaching 90 centimetres (35 in) in bell diameter and about 150 kilograms (330 lb) in weight.[50][51] The large bell mass of the giant Nomura's jellyfish[52] can dwarf a diver and is nearly always much greater than the up-to-100 centimetres (39 in) bell diameter Lion's Mane.[53]

The rarely encountered deep-sea jellyfish Stygiomedusa gigantea is another candidate for "largest jellyfish", with its thick, massive bell up to 100 centimetres (39 in) wide, and four thick, "strap-like" oral arms extending up to 6 metres (20 ft) in length, very different from the typical fine, threadlike tentacles that rim the umbrella of more-typical-looking jellyfish, including the Lion's Mane.[54]

Life history and behavior

Illustration of two life stages of seven jelly species
The developmental stages of scyphozoan jellyfish's life cycle:
1–3 Larva searches for site
4–8 Polyp grows
9–11 Polyp strobilates
12–14 Medusa grows

Life cycle

Jellyfish have a complex life cycle which includes both sexual and asexual phases, with the medusa being the sexual stage in most instances. Sperm fertilize eggs, which develop into larval planulae, become polyps, bud into ephyrae and then transform into adult medusae. In some species certain stages may be skipped.[55]

Upon reaching adult size, jellyfish spawn regularly if there is a sufficient supply of food. In most species, spawning is controlled by light, with all individuals spawning at about the same time of day, in many instances this is at dawn or dusk.[56] Jellyfish are usually either male or female (with occasional hermaphrodites). In most cases, adults release sperm and eggs into the surrounding water, where the unprotected eggs are fertilized and develop into larvae. In a few species, the sperm swim into the female's mouth, fertilizing the eggs within her body, where they remain during early development stages. In moon jellies, the eggs lodge in pits on the oral arms, which form a temporary brood chamber for the developing planula larvae.[57]

The planula is a small larva covered with cilia. When sufficiently developed, it settles onto a firm surface and develops into a polyp. The polyp generally consists of a small stalk topped by a mouth that is ringed by upward-facing tentacles. The polyps resemble those of closely related anthozoans, such as sea anemones and corals. The jellyfish polyp may be sessile, living on the bottom, boat hulls or other substrates, or it may be free-floating or attached to tiny bits of free-living plankton[58] or rarely, fish[59][60] or other invertebrates. Polyps may be solitary or colonial.[61] Most polyps are only millimetres in diameter and feed continuously. The polyp stage may last for years.[4]

After an interval and stimulated by seasonal or hormonal changes, the polyp may begin reproducing asexually by budding and, in the Scyphozoa, is called a segmenting polyp, or a scyphistoma. Budding produces more scyphistomae and also ephyrae.[4] Budding sites vary by species; from the tentacle bulbs, the manubrium (above the mouth), or the gonads of hydromedusae.[58] In a process known as strobilation, the polyp's tentacles are reabsorbed and transverse constrictions appear near the upper extremity of the polyp. These deepen as the constriction sites migrate down the body, and separate segments known as ephyra detach. These are free-swimming precursors of the adult medusa stage, which is the life stage that is typically identified as a jellyfish.[4][62] The ephyrae, usually only a millimeter or two across initially, swim away from the polyp and grow. Limnomedusae polyps can asexually produce a creeping frustule larval form, which crawls away before developing into another polyp.[4] A few species can produce new medusae by budding directly from the medusan stage. Some hydromedusae reproduce by fission (splitting in half).[58]

Lifespan

Little is known of the life histories of many jellyfish as the places on the seabed where their benthic forms live have not been found. However, an asexually reproducing strobila form can sometimes live for "several years", producing new medusae (ephyra larvae) each year.[63]

An unusual species, Turritopsis dohrnii, formerly classified as T. nutricula,[64] might be effectively immortal because of its ability under certain circumstances to transform from medusa back to the polyp stage, thereby escaping the death that typically awaits medusae post-reproduction if they have not otherwise been eaten by some other ocean organism. So far this reversal has been observed only in the laboratory.[65] At least one professor at the Seto Marine Biological Laboratory at Kyoto University in Japan has concluded that there are three species of jellyfish that are immortal, and says their immortality may hold the key to immortality for human beings, as he says that genetically they are not that much different from humans.[66]

Locomotion

Jellyfish locomotion is highly efficient. Muscles in the jellylike bell contract, setting up a start vortex and propelling the animal. When the contraction ends, the bell recoils elastically, creating a stop vortex with no extra energy input.
Jellyfish locomotion is highly efficient. Muscles in the jellylike bell contract, setting up a start vortex and propelling the animal. When the contraction ends, the bell recoils elastically, creating a stop vortex with no extra energy input.

Jellyfish are the most energy efficient swimmers of all animals.[67] They move through the water by radially expanding and contracting their bell-shaped bodies to push water behind them. They pause between the contraction and expansion to create two vortex rings. Muscles are used for the contraction of the body, which sheds the first vortex and pushes the animal forward, but the mesoglea is so elastic that the expansion is powered exclusively by relaxing the bell, which releases the energy stored from the contraction. By doing so, the second vortex ring rolls under it and begins to spin faster. This sucks in water which refills the bell and is pushed up against the centre of the body, giving it a secondary and "free" boost forward. The mechanism, called passive energy recapture, only works at low speeds and relatively small body sizes, allowing the animal to travel 30 percent farther on each swimming cycle. Jellyfish achieved a 48 percent lower cost of transport (the amount of food and oxygen consumed, versus energy spent in movement) than other animals in similar studies. One reason for this is that most of the gelatinous tissue of the bell is inactive, using no energy during swimming.[68][69][70]

Ecology

Diet

Jellyfish medusae are carnivorous, feeding on plankton, crustaceans, fish eggs, small fish and other jellyfish, ingesting food and voiding undigested waste through the mouth. They hunt passively using their tentacles as drift nets, or sink through the water with their tentacles spread widely; the tentacles, which contain nematocycts to stun or kill the prey, may then flex to help bring it to the mouth.[4] Their swimming technique also helps them to capture prey; when their body expands it sucks in water which brings more potential prey within reach of the tentacles.[71]

Predation

Other species of jellyfish are among the most common and important jellyfish predators, some of which specialize in jellies. Sea anemones may eat jellyfish that drift into their range. Other predators include tunas, sharks, swordfish, sea turtles and penguins.[72][73] The blue swimmer crab shreds and eats the gelatinous tissue and jellyfish washed up on the beach are consumed by foxes, other terrestrial mammals and birds.[74] In general however, there are few animals preying on jellyfish. Jellyfish can broadly be considered to be top predators in the food chain. Not only do they eat fish eggs and juvenile fish, but they also compete for food resources, leading to jellyfish having a difficult-to-reverse dominant position in the ecosystem.[75]

Symbiosis

Some small fish are immune to the stings of the jellyfish and live among the tentacles, serving as bait in a fish trap; they are safe from potential predators and are able to share in the fish caught by the jellyfish.[76] The cannonball jellyfish has a symbiotic relationship with ten different specifish, and with the longnose spider crab, which lives inside the bell, sharing the jellyfish's food and nibbling its tissues.[77]

Blooms

Map of population trends of native and invasive jellyfish[78]   Increase (high certainty)  Increase (low certainty)   Stable/variable  Decrease  No data
Map of population trends of native and invasive jellyfish[78]
  Increase (high certainty)
  Increase (low certainty)
  Stable/variable
  Decrease
  No data

Jellyfish form large masses or blooms in certain environmental conditions of ocean currents, nutrients, sunshine, temperature, season, prey availability, reduced predation and oxygen concentration. Currents collect jellyfish together, especially in years with unusually high populations. Jellyfish can detect marine currents and swim against the current to congregate in blooms.[79] Jellyfish are better able to survive in nutrient-rich, oxygen-poor water than competitors, and thus can feast on plankton without competition. Jellyfish may also benefit from saltier waters, as saltier waters contain more iodine, which is necessary for polyps to turn into jellyfish. Rising sea temperatures caused by climate change may also contribute to jellyfish blooms, because many species of jellyfish are relatively better able to survive in warmer waters.[80]

One hypothesis is that the global increase in jellyfish bloom frequency may stem from human impact. In some locations jellyfish may be filling ecological niches formerly occupied by now overfished animals, but this hypothesis lacks supporting data.[33][81]

Some jellyfish populations that have shown clear increases in the past few decades are invasive species, newly arrived from other habitats: examples include the Black Sea, Caspian Sea, Baltic Sea, central and eastern Mediterranean, Hawaii, and tropical and subtropical parts of the West Atlantic (including the Caribbean, Gulf of Mexico and Brazil).[82][83] Invasive populations can expand rapidly because they often face no predators in the new habitat.

Increased nutrients from agricultural or urban runoff contribute to jellyfish proliferation, increasing the growth of the plankton on which they feed. In addition, jellyfish can tolerate the low oxygen levels caused by eutrophication, itself a result of pollution by runoff.[81]

Population

Jellyfish populations may be expanding globally as a result of overfishing of their natural predators and the availability of excessive nutrients due to land runoff.[84][85] When marine ecosystems become disturbed jellyfish can proliferate. For example, jellyfish reproduce rapidly and have fast growth rates; they prey upon many species, while few species prey on them; and they feed via touch rather than visually, so they can feed effectively at night and in turbid waters.[86][87] It may become difficult for fish stocks to reestablish themselves in marine ecosystems once they have become dominated by jellyfish, because jellyfish feed on plankton, which includes fish eggs and larvae.[88][89]

Habitats

A common Scyphozoan jellyfish seen near beaches in the Florida Panhandle
A common Scyphozoan jellyfish seen near beaches in the Florida Panhandle

Most jellyfish are marine animals, although a few hydromedusae inhabit freshwater. The best known freshwater example is the cosmopolitan hydrozoan jellyfish, Craspedacusta sowerbii. It is less than an inch (2.5 cm) in diameter, colorless and does not sting.[90] Some jellyfish populations have become restricted to coastal saltwater lakes, such as Jellyfish Lake in Palau.[91]

Although most jellyfish live well off the ocean floor and form part of the plankton, a few species are closely associated with the bottom for much of their lives and can be considered benthic. The upside-down jellyfish in the genus Cassiopea typically lie on the bottom of shallow lagoons where they sometimes pulsate gently with their umbrella top facing down. The tiny creeping jellyfish Staurocladia and Eleutheria cannot swim and "walk" around on seaweed fronds or rocky bottoms on their tentacles. Most hydromedusae and scyphomedusae that live in coastal habitats find themselves on the bottom periodically, where they may stop swimming for a while, and certain box jellyfish species also rest on the sea bed in shallow water.[92] Even some deep-sea species of hydromedusae and scyphomedusae are usually collected on or near the bottom. All of the stauromedusae are found attached to either seaweed or rocky or other firm material on the bottom.[93]

Some species explicitly adapt to tidal flux. In Roscoe Bay, jellyfish ride the current at ebb tide until they hit a gravel bar, and then descend below the current. They remain in still waters until the tide rises, ascending and allowing it to sweep them back into the bay. They also actively avoid fresh water from mountain snowmelt, diving until they find enough salt.[3]

Parasites

Jellyfish are hosts to a wide variety of parasitic organisms. They act as intermediate hosts of endoparasitic helminths, with the infection being transferred to the definitive host fish after predation. Some digenean trematodes, especially species in the family Lepocreadiidae, use jellyfish as their second intermediate hosts. Fish become infected by the trematodes when they feed on infected jellyfish.[94][95]

Relation to humans

Global harvest of jellyfish in thousands of tonnes as reported by the FAO[96]
Global harvest of jellyfish in thousands of tonnes as reported by the FAO[96]

Fisheries

Fisheries have begun harvesting the American cannonball jellyfish, Stomolophus meleagris, along the southern Atlantic coast of the United States and in the Gulf of Mexico for export to Asia.[97]

Jellyfish are also harvested for their collagen, which is being investigated for use in a variety of applications including the treatment of rheumatoid arthritis.[98]

Products

Rehydrated jellyfish strips with soy sauce and sesame oil
Rehydrated jellyfish strips with soy sauce and sesame oil

Aristotle stated in the Parts of Animals IV, 6 that jellyfish (sea-nettles) were eaten in winter time in a fish stew.[99]

In some countries, such as China, Japan, and Korea, jellyfish are a delicacy. The jellyfish is dried to prevent spoiling. Only some 12 species of scyphozoan jellyfish belonging to the order Rhizostomeae are harvested for food, mostly in southeast Asia.[100] Rhizostomes, especially Rhopilema esculentum in China (海蜇 hǎizhé, "sea stingers") and Stomolophus meleagris (cannonball jellyfish) in the United States, are favored because of their larger and more rigid bodies and because their toxins are harmless to humans.[97]

Traditional processing methods, carried out by a Jellyfish Master, involve a 20- to 40-day multi-phase procedure in which after removing the gonads and mucous membranes, the umbrella and oral arms are treated with a mixture of table salt and alum, and compressed. Processing makes the jellyfish drier and more acidic, producing a crispy texture. Jellyfish prepared this way retain 7–10% of their original weight, and the processed product consists of approximately 94% water and 6% protein. Freshly processed jellyfish has a white, creamy color and turns yellow or brown during prolonged storage.[97]

In China, processed jellyfish are desalted by soaking in water overnight and eaten cooked or raw. The dish is often served shredded with a dressing of oil, soy sauce, vinegar and sugar, or as a salad with vegetables. In Japan, cured jellyfish are rinsed, cut into strips and served with vinegar as an appetizer.[97][101] Desalted, ready-to-eat products are also available.[97]

Biotechnology

The hydromedusa Aequorea victoria was the source of green fluorescent protein, studied for its role in bioluminescence and later for use as a marker in genetic engineering.
The hydromedusa Aequorea victoria was the source of green fluorescent protein, studied for its role in bioluminescence and later for use as a marker in genetic engineering.

Pliny the Elder reported that the slime of the jellyfish "Pulmo marinus" produced light when rubbed on a walking stick.[102]

In 1961, Osamu Shimomura extracted green fluorescent protein (GFP) and another bioluminescent protein, called aequorin, from the large and abundant hydromedusa Aequorea victoria, while studying photoproteins that cause bioluminescence in this species.[103] Three decades later, Douglas Prasher sequenced and cloned the gene for GFP.[104] Martin Chalfie figured out how to use GFP as a fluorescent marker of genes inserted into other cells or organisms.[105] Roger Tsien later chemically manipulated GFP to produce other fluorescent colors to use as markers. In 2008, Shimomura, Chalfie and Tsien won the Nobel Prize in Chemistry for their work with GFP.[103] Man-made GFP became commonly used as a fluorescent tag to show which cells or tissues express specific genes. The genetic engineering technique fuses the gene of interest to the GFP gene. The fused DNA is then put into a cell, to generate either a cell line or (via IVF techniques) an entire animal bearing the gene. In the cell or animal, the artificial gene turns on in the same tissues and the same time as the normal gene, making GFP instead of the normal protein. Illuminating the animal or cell reveals what tissues express that protein—or at what stage of development. The fluorescence shows where the gene is expressed.[106]

Aquarium display

Photo of downward-swimming jellies
Pacific sea nettles (Chrysaora fuscescens) in an aquarium exhibit

Jellyfish are displayed in many public aquariums. Often the tank's background is blue and the animals are illuminated by side light, increasing the contrast between the animal and the background. In natural conditions, many jellies are so transparent that they are nearly invisible.[107] Jellyfish are not adapted to closed spaces. They depend on currents to transport them from place to place. Professional exhibits feature precise water flows, typically in circular tanks to avoid trapping specimens in corners, as in the Monterey Bay Aquarium. The outflow is spread out over a large surface area and the inflow enters as a sheet of water in front of the outflow, so the jellyfish do not get sucked into it.[108] As of 2009, jellyfish were becoming popular in home aquariums, where they require similar equipment.[109]

Stings

Malo kingi, a venomous box jellyfish responsible for many deaths
Malo kingi, a venomous box jellyfish responsible for many deaths

Jellyfish are armed with nematocysts. Contact with a jellyfish tentacle can trigger millions of nematocysts to pierce the skin and inject venom,[110] but only some species' venom causes an adverse reaction in humans.[111] The effects of stings range from mild discomfort to extreme pain and death.[112] Most jellyfish stings are not deadly, but stings of some box jellyfish (Irukandji jellyfish), such as the sea wasp, can be deadly. Stings may cause anaphylaxis (a form of shock), which can be fatal. Jellyfish kill 20 to 40 people a year in the Philippines alone. In 2006 the Spanish Red Cross treated 19,000 stung swimmers along the Costa Brava.[112][113]

Vinegar (3–10% aqueous acetic acid) may help with box jellyfish stings,[114][115] but not the stings of the Portuguese man o' war.[114] Salt water may help if vinegar is unavailable.[114][116] Rubbing wounds, or using alcohol, ammonia, fresh water, or urine is not advised as they can encourage the release of more venom.[117] Clearing the area of jelly and tentacles reduces nematocyst firing.[117] Scraping the affected skin, such as with the edge of a credit card, may remove remaining nematocysts.[118] Once the skin has been cleaned of nematocysts, hydrocortisone cream applied locally reduces pain and inflammation.[119] Antihistamines may help to control itching.[118] Immunobased antivenins are used for serious box jellyfish stings.[120][121]

Mechanical issues

Jellyfish in large quantities can fill and split fishing nets and crush captured fish.[122] They can clog cooling equipment, disabling power stations in several countries. Jellyfish caused a cascading blackout in the Philippines in 1999,[112] as well as damaging the Diablo Canyon Power Plant in California in 2008.[123] They can stop desalination plants and ships' engines.[122][124]

See also

Notes

  1. ^ Sea jelly is a recent name, apparently in the attempt to avoid using the word "fish" for an invertebrate. However, starfish (echinoderms) and shellfish (molluscs and crustaceans) are common names in wide usage for groups of marine invertebrates, as jellyfish is.[1]

References

  1. ^ Dove, Alistair (19 October 2011). "On common Names". Deep Sea News. Retrieved 21 June 2018. He is currently Director of Research and Conservation at Georgia Aquarium in Atlanta USA 
  2. ^ Fossil Record Reveals Elusive Jellyfish More Than 500 Million Years Old Archived 7 March 2011 at the Wayback Machine.. ScienceDaily (2 November 2007).
  3. ^ a b c Angier, Natalie (June 6, 2011). "So Much More Than Plasma and Poison". The New York Times. Archived from the original on 18 May 2013. Retrieved 2 December 2011. 
  4. ^ a b c d e f g h i j k l m n o p q r s Ruppert, Edward E.; Fox, Richard, S.; Barnes, Robert D. (2004). Invertebrate Zoology, 7th edition. Cengage Learning. pp. 148–174. ISBN 978-81-315-0104-7. 
  5. ^ a b Cnidaria Archived 2012-09-21 at the Wayback Machine., Tree of Life. A comprehensive morphological cladistic analysis by Schuchert (1993) supports the basal position of Anthozoa with the Scyphozoa and Cubozoa being more closely related to each other than to Hydrozoa. Morphological, mtDNA, and 18S rDNA data separately and together also support the basal position of Anthozoa but do not resolve the relationships among Scyphozoa, Cubozoa and Hydrozoa (Bridge et al. 1995).
  6. ^ Zou, H.; Zhang, J.; Li, W.; Wu, S.; Wang, G. (2012). "Mitochondrial Genome of the Freshwater Jellyfish Craspedacusta sowerbyi and Phylogenetics of Medusozoa". PLoS ONE. 7 (12): e51465. Bibcode:2012PLoSO...751465Z. doi:10.1371/journal.pone.0051465. PMC 3519871Freely accessible. PMID 23240028. 
  7. ^ Dunn, Casey (2005). "Siphonophores". Siphonophores.org. Retrieved 10 June 2018. 
  8. ^ Hinde, R.T. (1998). "The Cnidaria and Ctenophora". In Anderson, D.T. Invertebrate Zoology. Oxford University Press. pp. 28–57. ISBN 0-19-551368-1. 
  9. ^ Salps Archived 2013-03-19 at the Wayback Machine. (wildlife), Antarctic Division, Australian Government website.
  10. ^ Marques, A.C.; A. G. Collins (2004). "Cladistic analysis of Medusozoa and cnidarian evolution". Invertebrate Biology. 123: 23–42. doi:10.1111/j.1744-7410.2004.tb00139.x. 
  11. ^ Kramp, P.L. (1961). "Synopsis of the Medusae of the World". Journal of the Marine Biological Association of the United Kingdom. 40: 1–469. doi:10.1017/s0025315400007347. 
  12. ^ Schuchert, Peter. "The Hydrozoa Directory". Archived from the original on 15 September 2008. Retrieved 11 August 2008. 
  13. ^ Mills, C.E.; D.R. Calder; A.C. Marques; A.E. Migotto; S. H. D. Haddock; C. W. Dunn and P. R. Pugh, 2007. Combined species list of Hydroids, Hydromedusae, and Siphonophores. pp. 151–168. In Light and Smith's Manual: Intertidal Invertebrates of the Central California Coast. Fourth Edition (J.T. Carlton, editor). University of California Press, Berkeley ISBN 0520239393.
  14. ^ Mills, Claudia E. "Stauromedusae: List of all valid species names". Archived from the original on 18 September 2008. Retrieved 11 August 2008. 
  15. ^ Dawson, Michael N. "The Scyphozoan". Archived from the original on 2009-03-21. Retrieved 2008-08-11. 
  16. ^ Daly, M.; Brugler, M. R.; Cartwright, P.; et al. (2007). "The phylum Cnidaria: A review of phylogenetic patterns and diversity 300 years after Linnaeus" (PDF). Zootaxa. 1668: 127–182. Archived (PDF) from the original on 2014-12-26. 
  17. ^ Bayha, K. M.; M. N. Dawson (2010). "New family of allomorphic jellyfishes, Drymonematidae (Scyphozoa, Discomedusae), emphasizes evolution in the functional morphology and trophic ecology of gelatinous zooplankton". The Biological Bulletin. 219 (3): 249–267. doi:10.1086/BBLv219n3p249. PMID 21183445. 
  18. ^ Straehler-Pohl, I., C. L. Widmer, and A. C. Morandini (2011). "Characterizations of juvenile stages of some semaeostome Scyphozoa (Cnidaria), with recognition of a new family (Phacellophoridae)" (PDF). Zootaxa. 2741: 1–37. Archived (PDF) from the original on 2013-10-23. 
  19. ^ Van Iten, Heyo; Marques, Antonio C.; Leme, Juliana de Moraes; Pacheco, Mirian L. A. Forancelli; Simões, Marcello Guimaraes (2014-05-21). Smith, Andrew, ed. "Origin and early diversification of the phylum Cnidaria Verrill: major developments in the analysis of the taxon's Proterozoic-Cambrian history". Palaeontology. 57 (4): 677–690. doi:10.1111/pala.12116. 
  20. ^ Kayal, Ehsan; Roure, Béatrice; Philippe, Hervé; Collins, Allen G.; Lavrov, Dennis V. (2013). "Cnidarian phylogenetic relationships as revealed by mitogenomics". BMC Evolutionary Biology. 13 (1): 5. doi:10.1186/1471-2148-13-5. 
  21. ^ Collins, A. G. (2002-04-30). "Phylogeny of Medusozoa and the evolution of cnidarian life cycles". Journal of Evolutionary Biology. 15 (3): 418–432. doi:10.1046/j.1420-9101.2002.00403.x. 
  22. ^ a b "jellyfish". Online Etymology Dictionary. Retrieved 9 June 2018. 
  23. ^ Kelman, Janet Harvey; Rev. Theodore Wood (1910). The Sea-Shore, Shown to the Children. London: T. C. & E. C. Jack. p. 146. Archived from the original on 2015-02-22. 
  24. ^ Kaplan, Eugene H.; Kaplan, Susan L.; Peterson, Roger Tory (August 1999). A Field Guide to Coral Reefs: Caribbean and Florida. Boston : Houghton Mifflin. p. 55. ISBN 0-618-00211-1. 
  25. ^ Haddock, S.H.D.; Case, J.F. (April 1999). "Bioluminescence spectra of shallow and deep-sea gelatinous zooplankton: ctenophores, medusae and siphonophores" (PDF). Marine Biology. 133 (3): 571–582. doi:10.1007/s002270050497. Archived from the original (PDF) on May 16, 2008. Retrieved 2009-09-09. 
  26. ^ Flower Hat Jelly, New York Aquarium.
  27. ^ See, e.g., Brotz, Lucas. Changing Jellyfish Populations: Trends in Large Marine Ecosystems Archived 2013-04-16 at the Wayback Machine.. 2011. p.1.
  28. ^ Coulombe, Deborah A. (14 February 1990). Seaside Naturalist: A Guide to Study at the Seashore. Simon & Schuster. p. 60. ISBN 9780671765033. Archived from the original on 31 December 2013. Retrieved 20 March 2013. 
  29. ^ Klappenbach, Laura. "Ten Facts about Jellyfish". Archived from the original on 26 February 2009. Retrieved 24 January 2010. 
  30. ^ "What are some determining characteristics of jellyfish in the class, Scyphozoa?". Archived from the original on January 18, 2010. Retrieved 24 January 2010. 
  31. ^ "Jellyfish Gone Wild". National Science Foundation. 3 March 2009. Archived from the original on 13 April 2010. Retrieved 17 November 2009. In recent years, massive blooms of stinging jellyfish and jellyfish-like creatures have overrun some of the world’s most important fisheries and tourist destinations.... Jellyfish swarms have also damaged fisheries, fish farms, seabed mining operations, desalination plants and large ships. 
  32. ^ "Jellyfish Take Over an Over-Fished Area". 21 July 2006. Archived from the original on 24 April 2010. Retrieved 19 November 2009. 
  33. ^ a b Mills, C.E. (2001). "Jellyfish blooms: are populations increasing globally in response to changing ocean conditions?" (PDF). Hydrobiologia. 451: 55–68. doi:10.1023/A:1011888006302. Archived (PDF) from the original on 2016-03-03. 
  34. ^ Hamner, W. M.; P. P. Hamner; S. W. Strand (1994). "Sun-compass migration by Aurelia aurita (Scyphozoa): population retention and reproduction in Saanich Inlet, British Columbia". Marine Biology. 119 (3): 347–356. doi:10.1007/BF00347531. 
  35. ^ Hsieh, Yun-Hwa; Rudloe, Jack (1994). "Potential of utilizing jellyfish as food in Western countries". Trends in Food Science & Technology. 5 (7): 225–229. doi:10.1016/0924-2244(94)90253-4. 
  36. ^ Jellyfish Archived 21 March 2015 at the Wayback Machine., The Visual Dictionary. Retrieved 28 March 2015
  37. ^ Nematocysts Archived 2 April 2015 at the Wayback Machine., Jellieszone.com. Retrieved 29 March 2014.
  38. ^ Kier, William (2012). "The diversity of hydrostatic skeletons". Journal of Experimental Biology. 215 (Pt 8): 1247–1257. doi:10.1242/jeb.056549. PMID 22442361. Archived from the original on 4 March 2016. Retrieved 2 January 2016. 
  39. ^ Satterlie, RA (2002). "Neuronal control of swimming in jellyfish: a comparative story". Canadian Journal of Zoology. 80 (10): 1654–1669. doi:10.1139/z02-138. Archived from the original (PDF) on July 12, 2013. 
  40. ^ Katsuki, Takeo; Greenspan, Ralph J. "Jellyfish nervous systems". Current Biology. 23 (14): R592–R594. doi:10.1016/j.cub.2013.03.057. 
  41. ^ Satterlie, Richard A. (April 2011). "Do jellyfish have central nervous systems?". Journal of Experimental Biology. 214 (8): 1215–1223. doi:10.1242/jeb.043687. PMID 21430196. Archived from the original on 16 October 2015. Retrieved 7 May 2013. 
  42. ^ Wehner, R. (2005). "Sensory physiology: brainless eyes" (PDF). Nature. 435 (7039): 157–159. Bibcode:2005Natur.435..157W. doi:10.1038/435157a. PMID 15889076. Archived (PDF) from the original on 29 July 2013. 
  43. ^ Multi-eyed jellyfish helps with Darwin's puzzle. Newscientist.com (14 May 2005). Retrieved on 10 January 2013. Archived 12 July 2013 at the Wayback Machine.
  44. ^ a b Mills, C.E.; Hirano, Y.M. (2007). Encyclopedia of Tidepools and Rocky Shores: Hydromedusae. University of California Press. pp. 286–288. ISBN 0520251180. 
  45. ^ Mills, C.E. (1976). "Podocoryne selena, a new species of hydroid from the Gulf of Mexico, and a comparison with Hydractinia echinata". Biological Bulletin. 151: 214–224. doi:10.2307/1540715. JSTOR 1540715. 
  46. ^ Costello, J. (1988). "Laboratory culture and feeding of the hydromedusa Cladonema californicum Hyman (Anthomedusa: Cladonemidae)". Journal of Experimental Marine Biology and Ecology. 123 (2): 177–188. doi:10.1016/0022-0981(88)90168-2. 
  47. ^ "Rare sighting of a lion's mane jellyfish in Tramore Bay". Waterford Today. 1 August 2007. Archived from the original on 2010-05-30. Retrieved 18 October 2010. 
  48. ^ "Lion's Mane Jellyfish – Reference Library". redOrbit. Archived from the original on 30 July 2010. Retrieved 18 October 2010. 
  49. ^ "150 Stung By Jellyfish At Rye Beach". Wmur.com. 21 July 2010. Archived from the original on 14 October 2011. Retrieved 11 June 2018. 
  50. ^ Omori, Makoto; Kitamura, Minoru (2004). "Taxonomic review of three Japanese species of edible jellyfish (Scyphozoa: Rhizostomeae)" (PDF). Plankton Biology and Ecology. 51 (1): 36–51. Archived (PDF) from the original on 2012-03-23. 
  51. ^ Uye, Shin-Ichi (2008). "Blooms of the giant jellyfish Nemopilema nomurai: a threat to the fisheries sustainability of the East Asian Marginal Seas" (PDF). Plankton & Benthos Research. 3 (Supplement): 125–131. doi:10.3800/pbr.3.125. Archived (PDF) from the original on 16 May 2013. 
  52. ^ "Giant Echizen jellyfish off Japan coast". BBC. 30 November 2009. Archived from the original on 1 January 2011. 
  53. ^ Kramp, P.L. (1961). "Synopsis of the medusae of the world". Journal of the Marine Biological Association of the United Kingdom. 40: 1–469. doi:10.1017/s0025315400007347. 
  54. ^ Bourton, Jody (23 April 2010). "Giant deep sea jellyfish filmed in Gulf of Mexico". BBC Earth News. Archived from the original on 5 July 2010. 
  55. ^ "How do jellyfish reproduce? What effect does their sting have on humans? What's the difference between red and translucent jellyfish?". Scientific American. 15 October 2013. Archived from the original on 23 October 2013. Retrieved 22 October 2013. 
  56. ^ Mills, Claudia (1983). "Vertical migration and diel activity patterns of hydromedusae: studies in a large tank". Journal of Plankton Research. 5 (5): 619–635. doi:10.1093/plankt/5.5.619. 
  57. ^ Bishop, Andrew. "Moon Jelly (Aurelia aurita)". Marine Invertebrates of Bermuda. Retrieved 11 June 2018. 
  58. ^ a b c Mills, C.E. (1987). "In situ and shipboard studies of living hydromedusae and hydroids: preliminary observations of life-cycle adaptations to the open ocean". Modern Trends in the Systematics, Ecology, and Evolution of Hydroids and Hydromedusae. Oxford: Clarendon Press. ISBN 0198571909. 
  59. ^ Fewkes, J. Walter (1887). "A hydroid parasitic on a fish". Nature. 36 (939): 604–605. Bibcode:1887Natur..36..604F. doi:10.1038/036604b0. 
  60. ^ Schuchert, Peter. "The Hydrozoa". Archived from the original on 4 February 2010. Retrieved 24 January 2010. 
  61. ^ Jellyfish – The Life Cycle of a Jellyfish Archived 8 February 2012 at the Wayback Machine. Animals.about.com. Retrieved on 10 January 2013
  62. ^ Hughes, Clare. "Lifecycle of the Box Jellyfish". Artforlibraries.org. Archived from the original on 4 March 2016. Retrieved 2 January 2016. 
  63. ^ Brusca, Richard (2016). Invertebrates. Sinauer Associates. p. 310. ISBN 978-1-60535-375-3. 
  64. ^ Miglietta, M.P.; Piraino, S.; Kubota, S.; Schuchert, P. (2007). "Species in the genus Turritopsis (Cnidaria, Hydrozoa): a molecular evaluation". Journal of Zoological Systematics and Evolutionary Research. 45 (1): 11–19. doi:10.1111/j.1439-0469.2006.00379.x. 
  65. ^ Piraino, S.; Boero, F.; Aeschbach, B.; Schmid, V. (1996). "Reversing the life cycle: medusae transforming into polyps and cell transdifferentiation in Turritopsis nutricula (Cnidaria, Hydrozoa)". Biological Bulletin. 190 (3): 302–312. doi:10.2307/1543022. JSTOR 1543022. 
  66. ^ "Does 'immortal' jellyfish have the secret to everlasting life?". CNN. 29 August 2014. Archived from the original on 2 September 2014. Retrieved 31 August 2014. 
  67. ^ "Jellyfish are the most energy-efficient swimmers, new metric confirms". Ars Technica. Archived from the original on 3 November 2014. Retrieved 3 December 2014. 
  68. ^ "Jellyfish energy efficiency to improve bio-inspired robotic designs for Navy". KurzweilAI. Bibcode:2013PNAS..11017904G. doi:10.1073/pnas.1306983110. Archived from the original on 2013-10-22. Retrieved 2013-10-22. 
  69. ^ Gemmell, B. J.; Costello, J. H.; Colin, S. P.; Stewart, C. J.; Dabiri, J. O.; Tafti, D.; Priya, S. (2013). "Passive energy recapture in jellyfish contributes to propulsive advantage over other metazoans". Proceedings of the National Academy of Sciences. 110 (44): 17904–17909. Bibcode:2013PNAS..11017904G. doi:10.1073/pnas.1306983110. PMC 3816424Freely accessible. PMID 24101461. 
  70. ^ "Why a jellyfish is the ocean's most efficient swimmer". Nature News & Comment. Archived from the original on 11 December 2014. Retrieved 3 December 2014. 
  71. ^ "Bigger jellyfish inheriting the ocean, study finds – World news – World environment – NBC News". msnbc.com. Archived from the original on 14 July 2014. Retrieved 3 December 2014. 
  72. ^ Yin, Steph (September 29, 2017). "Who's Eating Jellyfish? Penguins, That's Who". The New York Times. Archived from the original on October 1, 2017. Retrieved October 4, 2017. 
  73. ^ Thiebot, Jean-Baptiste; Arnould, John PY; Gómez-Laich, Agustina; Ito, Kentaro; Kato, Akiko; Mattern, Thomas; Mitamura, Hiromichi; Noda, Takuji; Poupart, Timothée; Quintana, Flavio; Raclot, Thierry; Ropert-Coudert, Yan; Sala, Juan E; Seddon, Philip J; Sutton, Grace J; Yoda, Ken; Takahashi, Akinori (2017). "Jellyfish and other gelata as food for four penguin species - insights from predator-borne videos". Frontiers in Ecology and the Environment. 15: 437–441. doi:10.1002/fee.1529. ISSN 1540-9295. 
  74. ^ Gershwin, Lisa-ann (2016). Jellyfish: A Natural History. University of Chicago Press. p. 140. ISBN 978-0-226-28767-6. 
  75. ^ Gershwin, Lisa-ann (2013). Stung!: On Jellyfish Blooms and the Future of the Ocean. University of Chicago Press. pp. 274–. ISBN 978-0-226-02010-5. Archived from the original on 2016-08-06. 
  76. ^ colugo7 (2006). "The jellyfish". Tree of Life Web Project. Retrieved 7 June 2018. 
  77. ^ Griffin, DuBose B.; Murphy, Thomas M. "Cannonball Jellyfish" (PDF). South Carolina Department of Natural Resources. Retrieved 7 June 2018. 
  78. ^ Brotz, Lucas; Cheung, William W.L.; Kleisner, Kristin; Pakhomov, Evgeny; Pauly, Daniel (2012). "Increasing jellyfish populations: trends in Large Marine Ecosystems". Hydrobiologia. 688: 3–20. doi:10.1007/s10750-012-1039-7. 
  79. ^ Gill, Victoria. "Jellyfish 'can sense ocean currents'". BBC News. Archived from the original on 26 January 2015. Retrieved 26 January 2015. 
  80. ^ Shubin, Kristie (10 December 2008). "Anthropogenic Factors Associated with Jellyfish Blooms – Final Draft II". Archived from the original on 14 June 2010. Retrieved 19 November 2009. 
  81. ^ a b The Washington Post, republished in the European Cetacean Bycatch Campaign, Jellyfish "blooms" could be sign of ailing seas Archived 19 October 2006 at the Wayback Machine., 6 May 2002. Retrieved 25 November 2007.
  82. ^ Abed-Navandi, D.; Kikinger, R. (2007). "First record of the tropical scyphomedusa Phyllorhiza punctata von Lendenfeld, 1884 (Cnidaria: Rhizostomeae) in the Central Mediterranean Sea" (PDF). Aquatic Invasions. 2 (4): 391–394. doi:10.3391/ai.2007.2.4.7. Archived (PDF) from the original on 2012-09-17. 
  83. ^ World's most invasive jellyfish spreading along Israel coast Archived 4 December 2010 at the Wayback Machine. Haaretz article from 15 June 2009
  84. ^ Hays, G.C.; Bastian, T.; Doyle, T.K.; Fossette, S.; Gleiss, A.C.; Gravenor, M.B.; Hobson, V.J.; Humphries, N.E.; Lilley, M.K.S.; Pade, N.G.; Sims, D.W. (2011). "High activity and Lévy searches: jellyfish can search the water column like fish" (PDF). Proceedings of the Royal Society B. 279 (1728): 465–473. doi:10.1098/rspb.2011.0978. PMC 3234559Freely accessible. PMID 21752825. Archived (PDF) from the original on 25 December 2012. 
  85. ^ Pauly, D.; Christensen, V.; Dalsgaard, J.; Froese, R.; Torres Jr, F. (1998). "Fishing down marine food webs" (PDF). Science. 279 (5352): 860–863. Bibcode:1998Sci...279..860P. doi:10.1126/science.279.5352.860. PMID 9452385. Archived (PDF) from the original on 10 July 2012. 
  86. ^ Richardson, A.J.; Bakun, A.; Hays, G.C.; Gibbons, M.J. (2009). "The jellyfish joyride: causes, consequences and management responses to a more gelatinous future" (PDF). Trends in Ecological Evolution. 24: 312–322. doi:10.1016/j.tree.2009.01.010. 
  87. ^ Aksnes, D.L.; Nejstgaard, J.; Sædberg, E.; Sørnes, T. (2004). "Optical control of fish and zooplankton populations" (PDF). Limnol. Oceanogr. 49: 233–238. Bibcode:2004LimOc..49..233A. doi:10.4319/lo.2004.49.1.0233. 
  88. ^ Lynam, C. P.; Gibbons, M. J.; Axelsen, B. E.; Sparks, C. A. J.; Coetzee, J.; Heywood, B. G.; Brierley, A. S. (2006). "Jellyfish overtake fish in a heavily fished ecosystem" (PDF). Curr. Biol. 16 (13): 492–493. doi:10.1016/j.cub.2006.06.018. PMID 16824906. Archived (PDF) from the original on 2011-03-23. 
  89. ^ Pauly, D.; Graham, W.; Libralato, S.; Morissette, L.; Palomares, M. L. D. (2009). "Jellyfish in ecosystems, online databases, and ecosystem models". Hydrobiologia. 616: 67–85. doi:10.1007/s10750-008-9583-x. Archived from the original (PDF) on July 12, 2013. 
  90. ^ Didžiulis, Viktoras. "Invasive Alien Species Fact Sheet: Craspedacusta sowerbyi" (PDF). NOBANIS. Archived (PDF) from the original on 17 May 2014. Retrieved 16 June 2016. 
  91. ^ Dawson, Mike N.; Martin, Laura E.; Penland, Lolita K. (2001). "Jellyfish swarms, tourists, and the Christ-child". Hydrobiologia. Springer Netherlands. 451: 131–144. doi:10.1023/A:1011868925383. ISBN 978-0-7923-6964-6. 
  92. ^ Kavanau, J. Lee (2006). "Is sleep's 'supreme mystery' unraveling? An evolutionary analysis of sleep encounters no mystery; nor does life's earliest sleep, recently discovered in jellyfish" (PDF). Medical Hypotheses. 66 (1): 3–9. doi:10.1016/j.mehy.2005.08.036. PMID 16213664. Archived (PDF) from the original on 23 July 2013. 
  93. ^ Mills, C.E.; Hirano, Y.M. (2007). "Stauromedusae". Encyclopedia of Tidepools and Rocky Shores: 541–543. 
  94. ^ Kondo, Yusuke; Ohtsuka, Susumu; Hirabayashi, Takeshi; Okada, Shoma; Ogawa, Nanako O.; Ohkouchi, Naohiko; Shimazu, Takeshi; Nishikawa, Jun (2016). "Seasonal changes in infection with trematode species utilizing jellyfish as hosts: evidence of transmission to definitive host fish via medusivory". Parasite. 23: 16. doi:10.1051/parasite/2016016. ISSN 1776-1042. PMC 4824873Freely accessible. PMID 27055563. Archived from the original on 4 November 2017.  open access publication – free to read
  95. ^ Leung, Tommy (26 May 2016). "Opechona olssoni". Blog: Parasite of the Day. Archived from the original on 30 June 2016. Retrieved 1 June 2016. 
  96. ^ Based on data extracted from the FishStat database Archived 7 April 2014 at the Wayback Machine.
  97. ^ a b c d e Hsieh, Y-H. Peggy; Leong, Fui-Ming; Rudloe, Jack (2001). "Jellyfish as food". Hydrobiologia. 451 (1–3): 11–17. doi:10.1023/A:1011875720415. 
  98. ^ George, Aleta (1 November 2012). "Jellies in the Spotlight". Endocrine News. Endocrine Society. Retrieved 16 June 2018. 
  99. ^ Aristotle; William Ogle (trans.). Parts of Animals. IV. p. 6. 
  100. ^ Omori, M.; Nakano, E. (2001). "Jellyfish fisheries in southeast Asia". Hydrobiologia. 451: 19–26. doi:10.1023/A:1011879821323. 
  101. ^ Firth, F.E. (1969). The Encyclopedia of Marine Resources. Van Nostrand Reinhold. ISBN 0-442-22399-4. 
  102. ^ "How the Jelly Got Its Glow". American Museum of Natural History. Retrieved 11 June 2018. 
  103. ^ a b Shimomura, O.; Johnson, F.H.; Saiga, Y. (1962). "Extraction, purification and properties of aequorin, a bioluminescent protein from the luminous hydromedusan, Aequorea". Journal of Cellular and Comparative Physiology. 59 (3): 223–39. doi:10.1002/jcp.1030590302. PMID 13911999. 
  104. ^ Prasher, D.C.; Eckenrode, V.K.; Ward, W.W.; Prendergast, F.G.; Cormier, M.J. (Feb 1992). "Primary structure of the Aequorea victoria green-fluorescent protein". Gene. 111 (2): 229–33. doi:10.1016/0378-1119(92)90691-H. PMID 1347277. 
  105. ^ Chalfie, M.; Tu, Y.; Euskirchen, G.; Ward, W.W.; Prasher, D.C. (Feb 1994). "Green fluorescent protein as a marker for gene expression". Science. 263 (5148): 802–5. Bibcode:1994Sci...263..802C. doi:10.1126/science.8303295. PMID 8303295. 
  106. ^ Pieribone, V.; Gruber, D.F. (2006). Aglow in the Dark: The Revolutionary Science of Biofluorescence. Harvard University Press. ISBN 0674024133. 
  107. ^ Herring, Peter (2002). The Biology of the Deep Ocean Oxford University Press. pp. 190–191. ISBN 978-0-19-854956-7. 
  108. ^ "US Patent for Jellyfish Tank". Archived from the original on 20 February 2015. 
  109. ^ Richtel, Matt (14 March 2009). "How to Avoid Liquefying Your Jellyfish". The New York Times. Archived from the original on 26 March 2010. Retrieved 6 May 2010. 
  110. ^ Purves, W.K.; Sadava, D.; Orians, G.H.; Heller, H.C. 1998. Life. The Science of Biology. Part 4: The Evolution of Diversity. Chapter 31
  111. ^ "Jellyfish Tanks and live pet Jellyfish for sale at Jellyfish Art – Buy Jellyfish and Jellyfish tanks". jellyfishart.com. Archived from the original on March 2, 2012. Retrieved 3 December 2014. 
  112. ^ a b c Tucker, Abigail (July 2010). "The New King of the Sea". Smithsonian. 
  113. ^ "Box Jellyfish: Deadliest Jellyfish – Sea Wasp Anatomy & Where It Lives". 13 August 2016. Archived from the original on 10 September 2016. Retrieved 17 September 2016. 
  114. ^ a b c Fenner, P.; Williamson, J.; Burnett, J.; Rifkin, J. (1993). "First aid treatment of jellyfish stings in Australia. Response to a newly differentiated species". Medical Journal of Australia. 158 (7): 498–501. PMID 8469205. 
  115. ^ Currie, B.; Ho, S.; Alderslade, P. (1993). "Box-jellyfish, Coca-Cola and old wine". Medical Journal of Australia. 158 (12): 868. PMID 8100984. 
  116. ^ Yoshimoto, C.; Leong, Fui-Ming; Rudloe, Jack (2006). "Jellyfish species distinction has treatment implications". American Family Physician. 73 (3): 391. PMID 16477882. 
  117. ^ a b Hartwick, R.; Callanan, V.; Williamson, J. (1980). "Disarming the box-jellyfish: nematocyst inhibition in Chironex fleckeri". Medical Journal of Australia. 1 (1): 15–20. PMID 6102347. 
  118. ^ a b Perkins, R.; Morgan, S. (2004). "Poisoning, envenomation, and trauma from marine creatures". American Family Physician. 69 (4): 885–90. PMID 14989575. 
  119. ^ Simmons, Brian J.; Griffith, Robert D.; Falto-Aizpurua, Leyre A.; Nouri, Keyvan (2015-04-01). "Moon Jellyfish Stings". JAMA Dermatology. American Medical Association (AMA). 151 (4): 454. doi:10.1001/jamadermatol.2014.4644. ISSN 2168-6068. 
  120. ^ Baxter, E.H.; Marr, A.G.M. (May 1974). "Sea wasp (Chironex fleckeri) antivenene: Neutralizing potency against the venom of three other jellyfish species". Toxicon. Toxicon. 12 (3): 223–225. doi:10.1016/0041-0101(74)90062-2. 
  121. ^ "Jellyfish Stings: Treatment and Drugs". Mayo Clinic. Mayo Foundation for Medical Education and Research. 1 September 2011. Archived from the original on 20 May 2013. Retrieved 15 April 2013. 
  122. ^ a b "Jellyfish Gone Wild — Text-only". Nsf.gov. Archived from the original on 12 July 2010. Retrieved 18 October 2010. 
  123. ^ "Current Event Notification Report". NRC. 22 October 2008. Archived from the original on 5 June 2011. Retrieved 14 July 2010. 
  124. ^ Ryall, Julian (2 November 2009). "Japanese fishing trawler sunk by giant jellyfish". London: Telegraph.co.uk. Archived from the original on 4 November 2009. 

External links

Photos
This page was last edited on 18 July 2018, at 17:57
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.