To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
Languages
Recent
Show all languages
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

Iwasawa decomposition

From Wikipedia, the free encyclopedia

In mathematics, the Iwasawa decomposition (aka KAN from its expression) of a semisimple Lie group generalises the way a square real matrix can be written as a product of an orthogonal matrix and an upper triangular matrix (QR decomposition, a consequence of Gram–Schmidt orthogonalization). It is named after Kenkichi Iwasawa, the Japanese mathematician who developed this method.[1]

Definition

  • G is a connected semisimple real Lie group.
  • is the Lie algebra of G
  • is the complexification of .
  • θ is a Cartan involution of
  • is the corresponding Cartan decomposition
  • is a maximal abelian subalgebra of
  • Σ is the set of restricted roots of , corresponding to eigenvalues of acting on .
  • Σ+ is a choice of positive roots of Σ
  • is a nilpotent Lie algebra given as the sum of the root spaces of Σ+
  • K, A, N, are the Lie subgroups of G generated by and .

Then the Iwasawa decomposition of is

and the Iwasawa decomposition of G is

meaning there is an analytic diffeomorphism (but not a group homomorphism) from the manifold to the Lie group , sending .

The dimension of A (or equivalently of ) is equal to the real rank of G.

Iwasawa decompositions also hold for some disconnected semisimple groups G, where K becomes a (disconnected) maximal compact subgroup provided the center of G is finite.

The restricted root space decomposition is

where is the centralizer of in and is the root space. The number is called the multiplicity of .

Examples

If G=SLn(R), then we can take K to be the orthogonal matrices, A to be the positive diagonal matrices with determinant 1, and N to be the unipotent group consisting of upper triangular matrices with 1s on the diagonal.

For the case of n=2, the Iwasawa decomposition of G=SL(2,R) is in terms of

For the symplectic group G=Sp(2n, R ), a possible Iwasawa decomposition is in terms of

Non-Archimedean Iwasawa decomposition

There is an analog to the above Iwasawa decomposition for a non-Archimedean field : In this case, the group can be written as a product of the subgroup of upper-triangular matrices and the (maximal compact) subgroup , where is the ring of integers of .[2]

See also

References

  1. ^ Iwasawa, Kenkichi (1949). "On Some Types of Topological Groups". Annals of Mathematics. 50 (3): 507–558. doi:10.2307/1969548. JSTOR 1969548.
  2. ^ Bump, Daniel (1997), Automorphic forms and representations, Cambridge: Cambridge University Press, doi:10.1017/CBO9780511609572, ISBN 0-521-55098-X, Prop. 4.5.2
This page was last edited on 16 October 2022, at 21:31
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.