To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
Languages
Recent
Show all languages
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

Isoenthalpic–isobaric ensemble

From Wikipedia, the free encyclopedia

The isoenthalpic-isobaric ensemble (constant enthalpy and constant pressure ensemble) is a statistical mechanical ensemble that maintains constant enthalpy and constant pressure applied. It is also called the -ensemble, where the number of particles is also kept as a constant. It was developed by physicist H. C. Andersen in 1980.[1] The ensemble adds another degree of freedom, which represents the variable volume of a system to which the coordinates of all particles are relative. The volume becomes a dynamical variable with potential energy and kinetic energy given by .[2] The enthalpy is a conserved quantity.[3] Using isoenthalpic-isobaric ensemble of Lennard-Jones fluid, it was shown [4] that the Joule–Thomson coefficient and inversion curve can be computed directly from a single molecular dynamics simulation. A complete vapor-compression refrigeration cycle and a vapor–liquid coexistence curve, as well as a reasonable estimate of the supercritical point can be also simulated from this approach. NPH simulation can be carried out using GROMACS and LAMMPS.

References

  1. ^ Andersen, H. C. Journal of Chemical Physics 72, 2384-2393 (1980).
  2. ^ Hwee, Chiang Soo. "Mechanical behavior of peptides in living systems using molecular dynamics." Archived 2007-06-22 at the Wayback Machine
  3. ^ Other Statistical Ensembles[dead link]
  4. ^ Kioupis, L. I.; Arya, G.; Maginn E. I. Pressure-enthalpy driven molecular dynamics for thermodynamic property calculation II: applications. Fluid Phase Equilibria 200, 93–110 (2002).[1]


This page was last edited on 7 July 2023, at 23:13
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.