To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.

Science in the medieval Islamic world

From Wikipedia, the free encyclopedia

The Tusi couple, a mathematical device invented by Nasir al-Din Tusi to model the not perfectly circular motions of the planets
The Tusi couple, a mathematical device invented by Nasir al-Din Tusi to model the not perfectly circular motions of the planets

Science in the medieval Islamic world was the science developed and practised during the Islamic Golden Age under the Umayyads of Córdoba, the Abbadids of Seville, the Samanids, the Ziyarids, the Buyids in Persia, the Abbasid Caliphate and beyond, spanning the period roughly between 786 and 1258. Islamic scientific achievements encompassed a wide range of subject areas, especially astronomy, mathematics, and medicine. Other subjects of scientific inquiry included alchemy and chemistry, botany and agronomy, geography and cartography, ophthalmology, pharmacology, physics, and zoology.

Medieval Islamic science had practical purposes as well as the goal of understanding. For example, astronomy was useful for determining the Qibla, the direction in which to pray, botany had practical application in agriculture, as in the works of Ibn Bassal and Ibn al-'Awwam, and geography enabled Abu Zayd al-Balkhi to make accurate maps. Islamic mathematicians such as Al-Khwarizmi, Avicenna and Jamshīd al-Kāshī made advances in algebra, trigonometry, geometry and Arabic numerals. Islamic doctors described diseases like smallpox and measles, and challenged classical Greek medical theory. Al-Biruni, Avicenna and others described the preparation of hundreds of drugs made from medicinal plants and chemical compounds. Islamic physicists such as Ibn Al-Haytham, Al-Bīrūnī and others studied optics and mechanics as well as astronomy, criticised Aristotle's view of motion.

The significance of medieval Islamic science has been debated by historians. The traditionalist view holds that it lacked innovation, and was mainly important for handing on ancient knowledge to medieval Europe. The revisionist view holds that it constituted a scientific revolution. Whatever the case, science flourished across a wide area around the Mediterranean and further afield, for several centuries, in a wide range of institutions.

YouTube Encyclopedic

  • 1/5
    513 340
    103 292
    143 399
    170 569
    7 069
  • ✪ The Medieval Islamicate World: Crash Course History of Science #7
  • ✪ History of the Islamic Golden Age | Religion, Science, & Culture in the Abbasid Empire
  • ✪ Golden age of Islam | World History | Khan Academy
  • ✪ What if Islam Had Conquered Europe?
  • ✪ Islam, Science, and the Challenge of History - "Science and Religion"


The religion of Islam significantly influenced knowledge-making in the greater Mediterranean and western Asian world. Islamicate scholars—meaning people influenced by Islamic civilization, regardless of their religious views—gave us terms such as “algebra,” “azimuth,” “algorithm,” “alcohol,” “alkali,” and “alembic.” We’ll dive into Islamic medicine and philosophers such as the great Persian polymath Ibn Sina in future episodes. For now, let’s explore the beginnings of Islamicate natural philosophy. [Intro Music Plays] Islamicate power expanded rapidly after the Prophet Muhammad’s death in CE 632. What began as one vast Arab-governed state soon fractured into two spheres of political influence: a western one centered in southern Spain, with a capital at Córdoba, and an eastern one including the great cities of northern Africa as well as Arabia and Mesopotamia. This eastern empire, the highly urbanized Abbasid Caliphate, existed in some form, increasingly fragmented, from 750–1517. The Abbasid Caliphate was a crossroads or trading zone for Persian, Indian, and Byzantine cultures, as well as for the religions of Islam, Judaism, Christianity, and Zoroastrianism. Many languages flourished across the Abbasid Caliphate, as they did in the Emirate of Córdoba. This blend of cultures and belief systems made early Islamicate science cosmopolitan—that is, generally inclusive in character. A high literacy rate thanks to Islam’s focus on the Qur’an meant that many people—well, noble men, at least—could study natural philosophical texts. Further, Islam-the-religion called on its adherents to treat others as equals, helping make Islamicate knowledge production more egalitarian. And ongoing support by pious philanthropists including heads of states allowed Islamicate polymaths to study natural phenomena systematically. Baghdad, the first Abbasid capital, was founded by its second caliph, al-Mansur, in 754. A sprawling metropolis quickly grew up around the original, carefully planned city. And Baghdad became the largest urban area in the world by 930, with a population of one million. Key for our story today: Baghdad housed the Bayt al-Ḥikmah or House of Wisdom. This great library grew out of al-Mansur’s private collection, which he opened up to visiting scholars, including delegations from India. Al-Mansur’s successor, Caliph al-Rashid, carried on this tradition. Al-Rashid also supported the Translation Movement, which we’ll get to shortly. But first, let’s reflect on his rule as a great example of the cosmopolitan character of the early Abbasids. Charlemagne sent a mission from France to al-Rashid’s court in 799 with gifts. So in 802, al-Rashid sent Charlemagne an embassy including an elephant named Abul-Abbas and a water clock that featured clockwork knights who emerged once per hour. You could see the elephant’s journey as one origin of veterinary science: the Abbasid diplomats kept the elephant healthy walking from India to Baghdad to France, and it lived for years after in captivity. And, to the Franks, the water clock was simply mind-blowing, something they’d never even imagined! But it was al-Rashid’s successor, Caliph al-Maʾmūn, who in 832 refounded the House of Wisdom specifically as an international center for translation and research. Al-Maʾmūn was involved in the House’s daily operations, and he sponsored knowledge production programmatically, inspiring his successors to do the same. By 850, the House of Wisdom had become the largest library in the world. Al-Maʾmūn sponsored families of scholar–translators to bring useful texts into Arabic from Greek, Chinese, Sanskrit, Persian, and Syriac. This should be known as the “Useful Texts into Arabic Movement” but, for some reason, is called the Translation Movement instead. This movement began with Persian texts concerning astrology and astronomy. Remember that, across the ancient and medieval worlds, astronomy was the study of the heavens, and astrology the study of the influence of heavenly bodies on earthly matters. While both were studied, astrology was seen as more useful. After texts about the stars, the translators moved onto others. To feed this program, al-Maʾmūn sent emissaries to collect Greek scientific manuscripts from the Byzantines—and began demanding them as loot in war. The Translation Movement lasted from roughly 750–950. By 950, virtually every Greek scholarly text had been translated multiple times, and the libraries were brimming. Many translators of Baghdad particularly fell for the works of Aristotle. One of the greatest Islamicate philosophers, Ibn Rushd, is sometimes called “The Commentator,” meaning the number-one Aristotle fan. To this day, more classical Greek commentaries on Aristotle may be available in Arabic than English! Why was Caliph al-Maʾmūn so into the Persian and Greek science? For one, supporting translations was a sign of civic status, and a worthy cause. Al-Maʾmūn also saw scientific translation as highly practical. For example, a better understanding of astronomy led to more accurate official timekeeping for mosques. And improved geographical knowledge helped more accurately align prayers to Mecca. The Translation Movement also fostered a strong appreciation for reasoned thought, at least among the ruling and scholarly classes. This rubbed off on religious philosophy, giving rise to the school of mu‘tazilism. Mu‘tazila such as al-Maʾmūn believed that rationalism could be used to understand both the physical world and God. They brought the Greek tradition of reasoned debate about the nature of the cosmos into an Islamicate social context, looking beyond a literal reading of the Qur’an for sources of knowledge. In fact, places of learning under the Abbasid Caliphate included observatories, hospitals, and public libraries, as well as mosques and madrasas, or Islamic colleges. Madrasas were critical centers of knowledge transmission. There were thirty in Baghdad in the 1200s, and one hundred and fifty in Damascus by 1500. Each madrasa had its own library full of paper books. Paper had been introduced to western Asia from China, and paper factories appeared in Samarkand, Baghdad, Cairo, Morocco, and finally in Spain by 1150. While they were religious centers, madrasas were also places where students could learn law as well as Greek natural philosophy, including logic and arithmetic, astronomy, and astrology. Abbasid scholars didn’t merely translate foreign writers. In translating the texts, these polymaths wrote commentaries on them, comparing, summarizing, and analyzing them. Even when motivated by utilitarian concerns, the work of careful reading and comparison led many scholars to pursue new questions in natural philosophy. For example, observatories arose throughout the Islamicate world. Al-Maʾmūn built two observatories, one in Baghdad and another outside Damascus. At these sites, scholars refined astronomical handbooks, called zīj, that helped fix prayer times. In fact, by the late ninth century, Islamicate polymaths such as Abu Maʿshar, the famous Persian physician al-Razi —whom we’ll meet again soon—and the Indian-influenced al-Biruni were even proposing heliocentric models of the solar system. Their theories went against Aristotle but with observed data! In geography, Islamicate scholars extended Ptolemy’s system. Our scientific hero today, Caliph al-Maʾmūn, commissioned a measurement of earth’s circumference that was pretty amazing: two groups ventured into the desert, finding a specific location by following the stars. One group walked north and the other south, tracking the stars for one degree. They counted their paces. Then they walked back, remeasured, averaged the measurements… and multiplied by 360 to derive a circumference of 24,480 miles. The modern measurement? 24,901—less than 2% more accurate than the one made by al-Maʾmūn’s team. And don’t get me started on astrolabes! You know—mechanical devices used for measuring incline by astronomers and navigators? To determine the position of celestial bodies in the night sky? The ones Islamicate astronomers improved by adding the azimuth, or direction of compass bearing? And then merged with armillary spheres, or models of the entire cosmos constructed from rings and hoops that revolved on their axes, around 900? And then improved into geared mechanical astrolabes in 1235? I’m looking at you, Abi Bakr of Isfahan!? MEANWHILE—back at the House of Wisdom… In addition to translation and improvement on Greek natural philosophy, scholars were also innovating in new realms. In mathematics, medieval Islamicate scholars focused on arithmetic and algebra. They adopted the number zero and the “Arabic” decimal-style numerals from India, using them so much that they became known to us as, well, Arabic. They also developed trigonometry. One example of this work in particular jumps out: in 820, at the House, Muhammad ibn Musa al-Khwarizmi wrote Kitab al-Jabr, or The Compendious Book on Calculation by Completion and Balancing, an original manual of practical math. Al-Khwarizmi wasn’t the first to work on algebra, but he set out the general rules for solving equations that was highly influential for centuries. Algebra introduced a theory that treated rational numbers, irrational numbers, geometrical magnitudes—all numbers—as similar objects, ready to be manipulated. Or, as my dude himself says it: “When I consider what people generally want in calculating, I found that it always is a number.” Mic drop! This opened up the possibility of exploring new areas of mathematics such as algorithms, quadratic equations, and polynomial equations. Also at the House of Wisdom, thinkers such as Mohammad Mūsā worked on the basic laws of physics. Others focused on optics, performing many experiments. And doctors and philosophers trained and traded works. But what about the engineers—the scholars working on technē instead of epistēmē? The Abbasid state privileged public service and the interests of the state, focusing on improving useful arts such as hydraulic engineering and agricultural science. The Abbasids used the arch, rather than the Greek post and lintel system. And they constructed large dams, waterwheels, and qanats, or underground channels to tap groundwater. Abbasid technology thus resembled that of the Romans, with craftspeople, not scholars, typically building actual stuff. But a few stand-out engineers from this time period created wonders so—er—wondrous, that they deserve a little attention from ThoughtBubble: In 850, at the House of Wisdom, the Banū Mūsā brothers—Mohammad, just mentioned, and Ahmad and Hasan—wrote The Book of Ingenious Devices: a compendium of one hundred devices and how to use them. This included the earliest programmable machine, “The Instrument that Plays by Itself.” Medieval automation, whaaat!?h And it gets cooler. In 1206—far from Baghdad, in what is now Diyarbakır, Turkey—the polymath al-Jazarī wrote an even more amazing book on machines: The Book of Knowledge of Ingenious Mechanical Devices also covers one hundred machines, with instructions on how to build them. Most of these are trick vessels, but others include water wheels, watermills, a giant water clock, elephant- and castle-shaped clocks, fountains improving upon designs by the Banū Mūsās, a candle clock, and musical automata. Al-Jazarī even designed a water-powered, perpetually-playing flute! How did these devices work? Well, it helped that al-Jazarī invented the camshaft, which would make it into Europe by the 1300s, an early version of the crankshaft, and the segmental gear. You can look up how these work online, but the point is: our modern world runs on them, and this guy figured them out in medieval times. That is so. Dang. Cool. But the coolest of al-Jazarī’s inventions were his full-on automata—medieval robots. He made humanoid machines including one that could serve water or tea. He made a flushing toilet with a nearby servant, who refilled the basin when flushed. And the pièce de résistance: al-Jazarī constructed a four-piece robot band that floated on a lake, entertaining party guests. The music? Most likely programmable, using tiny pegs and levers. Thanks Thought Bubble! We could spend several more episodes on science in the early Islamicate world. And we will come back to some of the people and themes mentioned today. There’s a common understanding of the history of medieval Eurasia and North Africa long-held by many English speakers is just plain wrong: instead of a “dark age” defined by conflicts between Muslims and Christians who didn’t understand one another, we encounter urban centers of trade and knowledge exchange populated by natural philosophers with a keen desire to build upon earlier insights regardless of their origins. Next time—we’ll build many cities and one very long canal in the rich Middle Kingdom, China. Crash Course History of Science is filmed in the Dr. Cheryl C. Kinney studio in Missoula, Montana and it’s made with the help of all this nice people and our animation team is Thought Cafe. Crash Course is a Complexly production. If you wanna keep imagining the world complexly with us, you can check out some of our other channels like Scishow, Eons, and Sexplanations. And, if you’d like to keep Crash Course free for everybody, forever, you can support the series at Patreon; a crowdfunding platform that allows you to support the content you love. Thank you to all of our patrons for making Crash Course possible with their continued support.



Islamic expansion:   under Muhammad, 622–632   under Rashidun caliphs, 632–661   under Umayyad caliphs, 661–750
Islamic expansion:
  under Muhammad, 622–632
  under Rashidun caliphs, 632–661
  under Umayyad caliphs, 661–750
The Abbasid Caliphate, 750–1261 (and later in Egypt) at its height, c. 850
The Abbasid Caliphate, 750–1261 (and later in Egypt) at its height, c. 850

The Islamic era began in 622. Islamic armies conquered Arabia, Egypt and Mesopotamia, eventually displacing the Persian and Byzantine Empires from the region. Within a century, Islam had reached the area of present-day Portugal in the west and Central Asia in the east. The Islamic Golden Age (roughly between 786 and 1258) spanned the period of the Abbasid Caliphate (750–1258), with stable political structures and flourishing trade. Major religious and cultural works of the Islamic empire were translated into Arabic and occasionally Persian. Islamic culture inherited Greek, Indic, Assyrian and Persian influences. A new common civilisation formed, based on Islam. An era of high culture and innovation ensued, with rapid growth in population and cities. The Arab Agricultural Revolution in the countryside brought more crops and improved agricultural technology, especially irrigation. This supported the larger population and enabled culture to flourish.[1][2] From the 8th century onwards, scholars such as Al-Kindi[3] translated Indian, Assyrian, Sasanian (Persian) and Greek knowledge, including the works of Aristotle, into Arabic. These translations supported advances by scientists across the Islamic world.[4]

Islamic science survived the initial Christian reconquest of Spain, including the fall of Seville in 1248, as work continued in the eastern centres (such as in Persia). After the completion of the Spanish reconquest in 1492, the Islamic world went into an economic and cultural decline.[2] The Abbasid caliphate was followed by the Ottoman Empire (c. 1299–1922), centred in Turkey, and the Safavid Empire (1501–1736), centred in Persia, where work in the arts and sciences continued.[5]

Fields of inquiry

Medieval Islamic scientific achievements encompassed a wide range of subject areas, especially  mathematics,  astronomy, and  medicine.[4] Other subjects of scientific inquiry included  physics,  alchemy and chemistry,  ophthalmology, and  geography and cartography.[6]

Alchemy and chemistry

Alchemy, already well established before the rise of Islam, stemmed from the belief that substances comprised mixtures of the four Aristotelian elements (fire, earth, air, and water) in different proportions. Alchemists regarded gold as the  noblest metal, and held that other metals formed a series down to the basest, such as lead. They believed, too, that a fifth element, the  elixir, could transform a base metal into gold. Jabir ibn Hayyan (8th–9th centuries) wrote on alchemy, based on his own experiments. He described laboratory techniques and experimental methods that would continue in use when alchemy had transformed into chemistry. Ibn Hayyan identified many substances, including sulphuric and nitric acids. He described processes such as  sublimation,  reduction and distillation. He made use of equipment such as the alembic and the retort stand.[7][8][9]

Astronomy and cosmology

Astronomy became a major discipline within Islamic science. Astronomers devoted effort both towards understanding the nature of the cosmos and to practical purposes. One application involved determining the Qibla, the direction to face during prayer. Another was  astrology, predicting events affecting human life and  selecting suitable times for actions such as going to war or founding a city.[10] Al-Battani (850–922) accurately determined the length of the solar year. He contributed to the Tables of Toledo, used by astronomers to predict the movements of the sun, moon and planets across the sky.  Copernicus (1473-1543) later used some of Al-Battani's astronomic tables.[11]

Al-Zarqali (1028–1087) developed a more accurate astrolabe, used for centuries afterwards. He constructed a water clock in  Toledo, discovered that the Sun's apogee moves slowly relative to the fixed stars, and obtained a good estimate of its motion[12] for its rate of change.[13] Nasir al-Din al-Tusi (1201–1274) wrote an important revision to  Ptolemy's 2nd-century celestial model. When Tusi became  Helagu's astrologer, he was given an observatory and gained access to Chinese techniques and observations. He developed trigonometry as a separate field, and compiled the most  accurate astronomical tables available up to that time.[14]

Botany and agronomy

The study of the natural world extended to a detailed examination of plants. The work done proved directly useful in the unprecedented growth of pharmacology across the Islamic world.[15]  Al-Dinawari (815–896) popularised botany in the Islamic world with his six-volume Kitab al-Nabat (Book of Plants). Only volumes 3 and 5 have survived, with part of volume 6 reconstructed from quoted passages. The surviving text describes 637 plants in alphabetical order from the letters sin to ya, so the whole book must have covered several thousand kinds of plants. Al-Dinawari described the phases of plant growth and the production of flowers and fruit. The thirteenth century encyclopedia compiled by Zakariya al-Qazwini (1203–1283) - ʿAjā'ib al-makhlūqāt (The Wonders of Creation) - contained, among many other topics, both realistic botany and fantastic accounts. For example, he described trees which grew birds on their twigs in place of leaves, but which could only be found in the far-distant British Isles.[16][15][17] The use and cultivation of plants was documented in the 11th century by  Muhammad bin Ibrāhīm Ibn Bassāl of Toledo in his book Dīwān al-filāha (The Court of Agriculture), and by Ibn al-'Awwam al-Ishbīlī of Seville in his 12th century book Kitāb al-Filāha (Treatise on Agriculture). Ibn Bassāl had travelled widely across the Islamic world, returning with a detailed knowledge of agronomy that fed into the Arab Agricultural Revolution. His practical and systematic book describes over 180 plants and how to propagate and care for them. It covered leaf- and root-vegetables, herbs, spices and trees.[18] Abū al-Khayr (c. 11th century) described in minute detail how olive trees should be grown, grafted, treated for disease, and harvested. He gave similar detail for crops such as cotton.[citation needed]

Geography and cartography

Surviving fragment of the first World Map of Piri Reis (1513)
Surviving fragment of the first World Map of Piri Reis (1513)

The spread of Islam across Western Asia and North Africa encouraged an unprecedented growth in trade and travel by land and sea as far away as Southeast Asia, China, much of Africa, Scandinavia and even Iceland. Geographers worked to compile increasingly accurate maps of the known world, starting from many existing but fragmentary sources.[19] Abu Zayd al-Balkhi (850–934), founder of the Balkhī school of cartography in Baghdad, wrote an atlas called Figures of the Regions (Suwar al-aqalim).[20] Al-Biruni (973–1048) measured the radius of the earth using a new method. It involved observing the height of a mountain at Nandana (now in Pakistan).[21] Al-Idrisi (1100–1166) drew a map of the world for Roger, the Norman King of Sicily (ruled 1105-1154). He also wrote the Tabula Rogeriana (Book of Roger), a geographic study of the peoples, climates, resources and industries of the whole of the world known at that time.[22] The  Ottoman admiral Piri Reis (c. 1470–1553) made a map of the New World and West Africa in 1513. He made use of maps from Greece, Portugal, Muslim sources, and perhaps one made by Christopher Columbus. He represented a part of a major tradition of Ottoman cartography.[23]


A page from al-Khwarizmi's Algebra
A page from al-Khwarizmi's Algebra

Islamic mathematicians gathered, organised and clarified the mathematics they inherited from ancient Egypt, Greece, India, Mesopotamia and Persia, and went on to make innovations of their own. Islamic mathematics covered algebra, geometry and arithmetic. Algebra was mainly used for recreation: it had few practical applications at that time. Geometry was studied at different levels. Some texts contain practical geometrical rules for surveying and for measuring figures. Theoretical geometry was a necessary prerequisite for understanding astronomy and optics, and it required years of concentrated work. Early in the Abbasid caliphate (founded 750), soon after the foundation of Baghdad in 762, some mathematical knowledge was assimilated by al-Mansur's group of scientists from the pre-Islamic Persian tradition in astronomy. Astronomers from India were invited to the court of the caliph in the late eighth century; they explained the rudimentary  trigonometrical techniques used in Indian astronomy. Ancient Greek works such as Ptolemy's Almagest and Euclid's Elements were translated into Arabic. By the second half of the ninth century, Islamic mathematicians were already making contributions to the most sophisticated parts of Greek geometry. Islamic mathematics reached its apogee in the Eastern part of the Islamic world between the tenth and twelfth centuries. Most medieval Islamic mathematicians wrote in Arabic, others in Persian.[24][25][26]

Omar Khayyam's "Cubic equation and intersection of conic sections"
Omar Khayyam's "Cubic equation and intersection of conic sections"

Al-Khwarizmi (8th–9th centuries) was instrumental in the adoption of the Hindu-Arabic numeral system and the development of algebra, introduced methods of simplifying equations, and used Euclidean geometry in his proofs.[27][28] He was the first to treat algebra as an independent discipline in its own right,[29] and presented the first systematic solution of linear and quadratic equations.[30]:14 Ibn Ishaq al-Kindi (801–873) worked on cryptography for the Abbasid Caliphate,[31] and gave the first known recorded explanation of cryptanalysis and the first description of the method of frequency analysis.[32][33] Avicenna (c. 980–1037) contributed to mathematical techniques such as casting out nines.[34] Thābit ibn Qurra (835–901) calculated the solution to a  chessboard problem involving an exponential series.[35] Al-Farabi (c. 870–950) attempted to describe, geometrically, the  repeating patterns popular in Islamic decorative motifs in his book Spiritual Crafts and Natural Secrets in the Details of Geometrical Figures.[36] Omar Khayyam (1048–1131), known in the West as a poet, calculated the length of the year to within 5 decimal places, and found geometric solutions to all 13 forms of cubic equations, developing some quadratic equations still in use.[37] Jamshīd al-Kāshī (c. 1380–1429) is credited with several theorems of trigonometry, including the law of cosines, also known as Al-Kashi's Theorem. He has been credited with the invention of decimal fractions, and with a method like Horner's to calculate roots. He calculated π correctly to 17 significant figures.[38]

Sometime around the seventh century, Islamic scholars adopted the Hindu-Arabic numeral system, describing their use in a standard type of text fī l-ḥisāb al hindī, (On the numbers of the Indians). A distinctive Western Arabic variant of the Eastern Arabic numerals began to emerge around the 10th century in the Maghreb and Al-Andalus (sometimes called ghubar numerals, though the term is not always accepted), which are the direct ancestor of the modern Arabic numerals used throughout the world.[39]


A coloured illustration from Mansur's Anatomy, c. 1450
A coloured illustration from Mansur's Anatomy, c. 1450

Islamic society paid careful attention to medicine, following a hadith enjoining the preservation of good health. Its physicians inherited knowledge and traditional medical beliefs from the civilisations of classical Greece, Rome, Syria, Persia and India. These included the writings of Hippocrates such as on the theory of the four humours, and the theories of Galen.[40] al-Razi (c. 854–925/935) identified smallpox and measles, and recognized fever as a part of the body's defenses. He wrote a 23-volume compendium of Chinese, Indian, Persian, Syriac and Greek medicine. al-Razi questioned the classical Greek medical theory of how the four humours regulate life processes. He challenged Galen's work on several fronts, including the treatment of bloodletting, arguing that it was effective.[41] al-Zahrawi (936–1013) was a surgeon whose most important surviving work is referred to as al-Tasrif (Medical Knowledge). It is a 30-volume set mainly discussing medical symptoms, treatments, and pharmacology. The last volume, on surgery, describes surgical instruments, supplies, and pioneering procedures.[42] Avicenna (c. 980–1037) wrote the major medical textbook, The Canon of Medicine.[34] Ibn al-Nafis (1213–1288) wrote an influential book on medicine; it largely replaced Avicenna's Canon in the Islamic world. He wrote commentaries on Galen and on Avicenna's works. One of these commentaries, discovered in 1924, described the circulation of blood through the lungs.[43][44]

Optics and ophthalmology

The eye according to Hunayn ibn Ishaq, c. 1200
The eye according to Hunayn ibn Ishaq, c. 1200
Ibn al-Haytham (Alhazen), (965–1039 Iraq). A polymath, considered to be the father of modern scientific methodology due to his emphasis on experimental data and on the reproducibility of its results.[45][46]
Ibn al-Haytham (Alhazen), (965–1039 Iraq). A polymath, considered to be the father of modern scientific methodology due to his emphasis on experimental data and on the reproducibility of its results.[45][46]

Optics developed rapidly in this period. By the ninth century, there were works on physiological, geometrical and physical optics. Topics covered included mirror reflection. Hunayn ibn Ishaq (809–873) wrote the book Ten Treatises on the Eye; this remained influential in the West until the 17th century.[47] Abbas ibn Firnas (810–887) developed lenses for magnification and the improvement of vision.[48] Ibn Sahl (c. 940–1000) discovered the law of refraction known as Snell's law. He used the law to produce the first Aspheric lenses that focused light without geometric aberrations.[49][50]

In the eleventh century Ibn al-Haytham (Alhazen, 965–1040) rejected the Greek ideas about vision, whether the Aristotelian tradition that held that the form of the perceived object entered the eye (but not its matter), or that of Euclid and Ptolemy which held that the eye emitted a ray. Al-Haytham proposed in his Book of Optics that vision occurs by way of light rays forming a cone with its vertex at the center of the eye. He suggested that light was reflected from different surfaces in different directions, thus causing objects to look different.[51][52][53][54] He argued further that the mathematics of reflection and refraction needed to be consistent with the anatomy of the eye.[55] He was also an early proponent of the scientific method, the concept that a hypothesis must be proved by experiments based on confirmable procedures or mathematical evidence, five centuries before Renaissance scientists.[56][57][58][59][60][61]


Ibn Sina teaching the use of drugs. 15th-century Great Canon of Avicenna
Ibn Sina teaching the use of drugs. 15th-century Great Canon of Avicenna

Advances in botany and chemistry in the Islamic world encouraged developments in pharmacology. Muhammad ibn Zakarīya Rāzi (Rhazes) (865–915) promoted the medical uses of chemical compounds. Abu al-Qasim al-Zahrawi (Abulcasis) (936–1013) pioneered the preparation of medicines by  sublimation and distillation. His Liber servitoris provides instructions for preparing  "simples" from which were  compounded the complex drugs then used. Sabur Ibn Sahl (died 869) was the first physician to describe a large variety of drugs and remedies for ailments.  Al-Muwaffaq, in the 10th century, wrote The foundations of the true properties of Remedies, describing chemicals such as arsenious oxide and silicic acid. He distinguished between sodium carbonate and potassium carbonate, and drew attention to the poisonous nature of copper compounds, especially copper vitriol, and also of lead compounds. Al-Biruni (973–1050) wrote the Kitab al-Saydalah (The Book of Drugs), describing in detail the properties of drugs, the role of pharmacy and the duties of the pharmacist. Ibn Sina (Avicenna) described 700 preparations, their properties, their mode of action and their indications. He devoted a whole volume to simples in The Canon of Medicine. Works by Masawaih al-Mardini (c. 925–1015) and by Ibn al-Wafid (1008–1074) were printed in Latin more than fifty times, appearing as De Medicinis universalibus et particularibus by  Mesue the Younger (died 1015) and as the Medicamentis simplicibus by  Abenguefit (c. 997 – 1074) respectively. Peter of Abano (1250–1316) translated and added a supplement to the work of al-Mardini under the title De Veneris. Ibn al-Baytar (1197–1248), in his Al-Jami fi al-Tibb, described a thousand simples and drugs based directly on Mediterranean plants collected along the entire coast between Syria and Spain, for the first time exceeding the coverage provided by Dioscorides in classical times.[62][15] Islamic physicians such as Ibn Sina described clinical trials for determining the efficacy of medical drugs and substances.[63]


Self trimming lamp in  Ahmad ibn Mūsā ibn Shākir's treatise on mechanical devices, c. 850
Self trimming lamp in  Ahmad ibn Mūsā ibn Shākir's treatise on mechanical devices, c. 850

The fields of physics studied in this period, apart from optics and astronomy which are described separately, are aspects of mechanics: statics, dynamics, kinematics and motion. In the sixth century John Philoponus (c. 490 – c. 570) rejected the  Aristotelian view of motion. He argued instead that an object acquires an inclination to move when it has a motive power impressed on it. In the eleventh century Ibn Sina adopted roughly the same idea, namely that a moving object has force which is dissipated by external agents like air resistance.[64] Ibn Sina distinguished between "force" and "inclination" (mayl); he claimed that an object gained mayl when the object is in opposition to its natural motion. He concluded that continuation of motion depends on the inclination that is transferred to the object, and that the object remains in motion until the mayl is spent. He also claimed that a projectile in a vacuum would not stop unless it is acted upon. That view accords with Newton's first law of motion, on inertia.[65] As a non-Aristotelian suggestion, it was essentially abandoned until it was described as "impetus" by Jean Buridan (c. 1295–1363), who was influenced by Ibn Sina's Book of Healing.[64]

In the Shadows, Abū Rayḥān al-Bīrūnī (973–1048) describes non-uniform motion as the result of acceleration.[66] Ibn-Sina's theory of mayl tried to relate the velocity and weight of a moving object, a precursor of the concept of momentum.[67] Aristotle's theory of motion stated that a constant force produces a uniform motion; Abu'l-Barakāt al-Baghdādī (c. 1080 – 1164/5) disagreed, arguing that velocity and acceleration are two different things, and that force is proportional to acceleration, not to velocity.[68]

Ibn Bajjah (Avempace, c. 1085–1138) proposed that for every force there is a reaction force. While he did not specify that these forces be equal, this was still an early version of Newton's third law of motion.[69]

The Banu Musa brothers, Jafar-Muhammad, Ahmad and al-Hasan (c. early 9th century) invented automated devices described in their Book of Ingenious Devices.[70][71][72]


Page from the Kitāb al-Hayawān (Book of Animals) by Al-Jahiz. Ninth century
Page from the Kitāb al-Hayawān (Book of Animals) by Al-Jahiz. Ninth century

Many  classical works, including those of Aristotle, were transmitted from Greek to Syriac, then to Arabic, then to Latin in the Middle Ages.  Aristotle's zoology remained dominant in its field for two thousand years.[73] The Kitāb al-Hayawān (كتاب الحيوان, English: Book of Animals) is a 9th-century Arabic translation of History of Animals: 1–10, On the Parts of Animals: 11–14,[74] and Generation of Animals: 15–19.[75][76]

The book was mentioned by Al-Kindī (died 850), and commented on by Avicenna (Ibn Sīnā) in his The Book of Healing. Avempace (Ibn Bājja) and Averroes (Ibn Rushd) commented on and criticised On the Parts of Animals and Generation of Animals.[77]


Historians of science differ in their views of the significance of the scientific accomplishments in the medieval Islamic world. The traditionalist view, exemplified by Bertrand Russell,[78] holds that Islamic science, while admirable in many technical ways, lacked the intellectual energy required for innovation and was chiefly important for preserving ancient knowledge, and handing it on to medieval Europe. The revisionist view, exemplified by Abdus Salam,[79] George Saliba[80] and John M. Hobson[81] holds that a Muslim scientific revolution occurred during the Middle Ages.[82] Scholars such as Donald Routledge Hill and Ahmad Y. Hassan argue that Islam was the driving force behind these scientific achievements.[83]

According to Ahmed Dallal, science in medieval Islam was "practiced on a scale unprecedented in earlier human history or even contemporary human history".[84] Toby Huff takes the view that, although science in the Islamic world did produce localized innovations, it did not lead to a scientific revolution, which in his view required an ethos that existed in Europe in the twelfth and thirteenth centuries, but not elsewhere in the world.[85][86][87] Will Durant, Fielding H. Garrison, Hossein Nasr and Bernard Lewis held that Muslim scientists helped in laying the foundations for an experimental science with their contributions to the scientific method and their empirical, experimental and quantitative approach to scientific inquiry.[88][89][90][91]

James E. McClellan III and Harold Dorn, reviewing the place of Islamic science in world history, comment that the positive achievement of Islamic science was simply to flourish, for centuries, in a wide range of institutions from observatories to libraries, madrasas to hospitals and courts, both at the height of the Islamic golden age and for some centuries afterwards. It plainly did not lead to a scientific revolution like that in Early modern Europe, but in their view, any such external comparison is just an attempt to impose "chronologically and culturally alien standards" on a successful medieval culture.[2]

See also


  1. ^ Hodgson, Marshall (1974). The Venture of Islam; Conscience and History in a World Civilisation Vol 1. University of Chicago. pp. 233–238. ISBN 978-0-226-34683-0.
  2. ^ a b c McClellan and Dorn 2006, pp.103–115
  3. ^ "Al-Kindi". Stanford Encyclopedia of Philosophy. 17 March 2015.
  4. ^ a b Robinson, Francis, ed. (1996). The Cambridge Illustrated History of the Islamic World. Cambridge University Press. pp. 228–229.
  5. ^ Turner 1997, p.7
  6. ^ Turner 1997, Table of contents
  7. ^ Masood 2009, pp.153–155
  8. ^ Lagerkvist, Ulf (2005). The Enigma of Ferment: from the Philosopher's Stone to the First Biochemical Nobel Prize. World Scientific Publishing. p. 32. ISBN 9789812564214.
  9. ^ Turner 1997, pp.189–194
  10. ^ Turner 1997, pp.59–116
  11. ^ Masood 2009, pp.74, 148–150
  12. ^ Linton (2004), p.97). Owing to the unreliability of the data al-Zarqali relied on for this estimate, its remarkable accuracy was fortuitous.
  13. ^ Masood 2009, pp.73–75
  14. ^ Masood 2009, pp.132–135
  15. ^ a b c Turner 1997, pp.138–139
  16. ^ Fahd, Toufic, Botany and agriculture, p. 815, in Morelon & Rashed 1996, pp.813–852
  17. ^ Turner 1997, pp.162–188
  18. ^ "Ibn Baṣṣāl: Dīwān al-filāḥa / Kitāb al-qaṣd wa'l-bayān". The Filaha Texts Project: The Arabic Books of Husbandry. Retrieved 11 April 2017.
  19. ^ Turner 1997, pp.117–130
  20. ^ Edson, E.; Savage-Smith, Emilie (2004). Medieval Views of the Cosmos. Bodleian Library. pp. 61–3. ISBN 978-1-851-24184-2.
  21. ^ Pingree, David. "BĪRŪNĪ, ABŪ RAYḤĀN iv. Geography". Encyclopædia Iranica. Columbia University. ISBN 978-1-56859-050-9.
  22. ^ Masood 2009, pp.79–80
  23. ^ Turner 1997, pp.128–129
  24. ^ Meri, Josef W. (January 2006). Medieval Islamic Civilization, Volume 1: An Encyclopedia. Routledge. pp. 484–485. ISBN 978-0-415-96691-7.
  25. ^ Turner 1997, pp.43–61
  26. ^ Hogendijk, Jan P.; Berggren, J. L. (1989). "Episodes in the Mathematics of Medieval Islam by J. Lennart Berggren". Journal of the American Oriental Society. 109 (4): 697–698. doi:10.2307/604119. JSTOR 604119.
  27. ^  Toomer, Gerald (1990). "Al-Khwārizmī, Abu Jaʿfar Muḥammad ibn Mūsā". In Gillispie, Charles Coulston. Dictionary of Scientific Biography. 7. New York: Charles Scribner's Sons. ISBN 0-684-16962-2.
  28. ^ Masood 2009, pp.139–145
  29. ^ Gandz, S. (1936), "The Sources of Al-Khowārizmī's Algebra", Osiris, 1: 263–277, page 263–277: "In a sense, al-Khwarizmi is more entitled to be called "the father of algebra" than Diophantus because al-Khwarizmi is the first to teach algebra in an elementary form and for its own sake, Diophantus is primarily concerned with the theory of numbers".
  30. ^ Maher, P. (1998). From Al-Jabr to Algebra. Mathematics in School, 27(4), 14–15.
  31. ^ Masood 2009, pp.49–52
  32. ^ Broemeling, Lyle D. (1 November 2011). "An Account of Early Statistical Inference in Arab Cryptology". The American Statistician. 65 (4): 255–257. doi:10.1198/tas.2011.10191.
  33. ^ Al-Kadi, Ibrahim A. (1992). "The origins of cryptology: The Arab contributions". Cryptologia. 16 (2): 97–126. doi:10.1080/0161-119291866801.
  34. ^ a b Masood 2009, pp.104–105
  35. ^ Masood 2009, pp.48–49
  36. ^ Masood 2009, pp.148–149
  37. ^ Masood 2009, pp.5, 104, 145–146
  38. ^ O'Connor, John J.; Robertson, Edmund F., "Ghiyath al-Din Jamshid Mas'ud al-Kashi", MacTutor History of Mathematics archive, University of St Andrews.
  39. ^ Kunitzsch, Paul (2003), "The Transmission of Hindu-Arabic Numerals Reconsidered", in J. P. Hogendijk; A. I. Sabra (eds.), The Enterprise of Science in Islam: New Perspectives, MIT Press, pp. 3–22, ISBN 978-0-262-19482-2
  40. ^ Turner 1997, pp.131–161
  41. ^ Masood 2009, pp.74, 99–105
  42. ^ Masood 2009, pp.108–109
  43. ^ Masood 2009, pp.110–111
  44. ^ Turner 1997, pp.131–139
  45. ^ Jim Al-Khalili (4 January 2009). "The 'first true scientist'". BBC News. Ibn al-Haytham is regarded as the father of the modern scientific method.
  46. ^ Tracey Tokuhama-Espinosa (2010). Mind, Brain, and Education Science: A Comprehensive Guide to the New Brain-Based Teaching. W. W. Norton & Company. p. 39. ISBN 9780393706079. Alhazen (or Al-Haytham; 965–1039 CE) was perhaps one of the greatest physicists of all times and a product of the Islamic Golden Age or Islamic Renaissance (7th–13th centuries). He made significant contributions to anatomy, astronomy, engineering, mathematics, medicine, ophthalmology, philosophy, physics, psychology, and visual perception and is primarily attributed as the inventor of the scientific method, for which author Bradley Steffens (2006) describes him as the "first scientist".
  47. ^ Masood 2009, pp.47–48, 59, 96–97, 171–72
  48. ^ Masood 2009, pp.71–73
  49. ^ K. B. Wolf, "Geometry and dynamics in refracting systems", European Journal of Physics 16, p. 14–20, 1995.
  50. ^ R. Rashed, "A pioneer in anaclastics: Ibn Sahl on burning mirrors and lenses", Isis 81, p. 464–491, 1990
  51. ^ Dallal, Ahmad (2010). Islam, Science, and the Challenge of History. Yale University Press. pp. 38–39.
  52. ^ Lindberg, David C. (1976). Theories of Vision from al-Kindi to Kepler. University of Chicago Press, Chicago. ISBN 978-0-226-48234-7. OCLC 1676198.
  53. ^ El-Bizri, Nader (2005). A Philosophical Perspective on Alhazen's Optics. Arabic Sciences and Philosophy, Vol. 15. Cambridge University Press. pp. 189–218.
  54. ^ El-Bizri, Nader (30 March 2011). "Ibn al-Haytham". Muslim Heritage. Retrieved 9 July 2017.
  55. ^ Masood  2009, pp.173–175
  56. ^ Ackerman, James S (August 1991), Distance Points: Essays in Theory and Renaissance Art and Architecture, Cambridge, Massachusetts, USA: MIT Press, ISBN 978-0262011228
  57. ^ Haq, Syed (2009). "Science in Islam". Oxford Dictionary of the Middle Ages. ISSN 1703-7603. Retrieved 22 October 2014.
  58. ^ G. J. Toomer. Review on JSTOR, Toomer's 1964 review of Matthias Schramm (1963) Ibn Al-Haythams Weg Zur Physik Toomer p.464: "Schramm sums up [Ibn Al-Haytham's] achievement in the development of scientific method."
  59. ^ "International Year of Light - Ibn Al-Haytham and the Legacy of Arabic Optics".
  60. ^ Al-Khalili, Jim (4 January 2009). "The 'first true scientist'". BBC News. Retrieved 24 September 2013.
  61. ^ Gorini, Rosanna (October 2003). "Al-Haytham the man of experience. First steps in the science of vision" (PDF). Journal of the International Society for the History of Islamic Medicine. 2 (4): 53–55. Retrieved 25 September 2008.
  62. ^ Levey, M. (1973). Early Arabic Pharmacology. E. J. Brill.
  63. ^ Meinert CL, Tonascia S (1986). Clinical trials: design, conduct, and analysis. Oxford University Press, USA. p. 3. ISBN 978-0-19-503568-1.
  64. ^ a b Sayili, Aydin (1987). "Ibn Sina and Buridan on the Motion the Projectile". Annals of the New York Academy of Sciences. 500 (1): 477–482. doi:10.1111/j.1749-6632.1987.tb37219.x.
  65. ^ Espinoza, Fernando (2005). "An Analysis of the Historical Development of Ideas About Motion and its Implications for Teaching". Physics Education. 40 (2): 139–146. doi:10.1088/0031-9120/40/2/002.
  66. ^ "Biography of Al-Biruni". University of St. Andrews, Scotland.
  67. ^ Nasr, S.H.; Razavi, M.A. (1996). The Islamic Intellectual Tradition in Persia. Routledge.
  68. ^ Pines, Shlomo (1986). Studies in Arabic versions of Greek texts and in mediaeval science. 2. Brill Publishers. p. 203. ISBN 978-965-223-626-5.
  69. ^ Franco, Abel B. "Avempace, Projectile Motion, and Impetus Theory". Journal of the History of Ideas. 64 (4): 543.
  70. ^ Masood 2009, pp.161–163
  71. ^ Lindberg, David (1978). Science in the Middle Ages. University of Chicago Press. pp. 23, 56.
  72. ^ Selin, Helaine, ed. (1997). Encyclopaedia of the History of Science, Technology, and Medicine in Non-Western Cultures. Kluwer Academic Publishers. pp. 151, 235, 375.
  73. ^ Hoffman, Eva R. (2013). Translating Image and Text in the Medieval Mediterranean World between the Tenth and Thirteenth Centuries. Mechanisms of Exchange: Transmission in Medieval Art and Architecture of the Mediterranean, ca. 1000–1500. Brill. pp. 288–. ISBN 978-90-04-25034-5.
  74. ^ Kruk, R., 1979, The Arabic Version of Aristotle's Parts of Animals: book XI–XIV of the Kitab al-Hayawan, Royal Netherlands Academy of Arts and Sciences, Amsterdam-Oxford 1979.
  75. ^ Contadini, Anna (2012). A World of Beasts: A Thirteenth-Century Illustrated Arabic Book on Animals (the Kitab Na't al-Hayawan) in the Ibn Bakhtishu' Tradition). Leiden: Brill. ISBN 9789004222656.
  76. ^ Kruk, R., 2003, "La zoologie aristotélicienne. Tradition arabe", DPhA Supplement, 329–334
  77. ^ Leroi, Armand Marie (2014). The Lagoon: How Aristotle Invented Science. Bloomsbury. pp. 354–355. ISBN 978-1-4088-3622-4.
  78. ^ Bertrand Russell (1945), History of Western Philosophy, book 2, part 2, chapter X
  79. ^ Abdus Salam, H. R. Dalafi, Mohamed Hassan (1994). Renaissance of Sciences in Islamic Countries, p. 162. World Scientific, ISBN 9971-5-0713-7.
  80. ^ Saliba 1994, pp.245, 250, 256–257
  81. ^ Hobson 2004, p.178
  82. ^ Abid Ullah Jan (2006), After Fascism: Muslims and the struggle for self-determination, "Islam, the West, and the Question of Dominance", Pragmatic Publishings, ISBN 978-0-9733687-5-8.
  83. ^ Ahmad Y. Hassan and Donald Routledge Hill (1986), Islamic Technology: An Illustrated History, p. 282, Cambridge University Press
  84. ^ Dallal, Ahmad (2010). Islam, science, and the challenge of history. Yale University Press. p. 12. ISBN 978-0-300-15911-0.
  85. ^ Huff, Toby E. (2003) [1993]. The Rise of Early Modern Science: Islam, China and the West (2nd ed.). Cambridge University Press. pp. 209–239 and passim. ISBN 978-0-521-52994-5.
  86. ^ Huff, Toby E. (2003). The Rise of Early Modern Science: Islam, China, and the West. Cambridge University Press. ISBN 978-0-521-52994-5.
  87. ^ Saliba, George (Autumn 1999). "Seeking the Origins of Modern Science? Review of Toby E. Huff, The Rise of Early Modern Science: Islam, China and the West". Bulletin of the Royal Institute for Inter-Faith Studies. 1 (2).
  88. ^ Will Durant (1980). The Age of Faith (The Story of Civilization, Volume 4), p. 162–186. Simon & Schuster. ISBN 0-671-01200-2.
  89. ^ Nasr, Hossein (1976). Islamic Science: An Illustrated Study. ISBN 978-0-905035-02-4.
  90. ^ Fielding H. Garrison, An Introduction to the History of Medicine: with Medical Chronology, Suggestions for Study and Biblographic Data, p. 86
  91. ^ Lewis, Bernard (2001). What Went Wrong? : Western Impact and Middle Eastern Response. Oxford University Press. p. 79. ISBN 978-0-19-514420-8.


Further reading

External links

This page was last edited on 20 January 2020, at 09:31
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.