To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.

Irrelevant ideal

From Wikipedia, the free encyclopedia

In mathematics, the irrelevant ideal is the ideal of a graded ring generated by the homogeneous elements of degree greater than zero. More generally, a homogeneous ideal of a graded ring is called an irrelevant ideal if its radical contains the irrelevant ideal.[1]

The terminology arises from the connection with algebraic geometry. If R = k[x0, ..., xn] (a multivariate polynomial ring in n+1 variables over an algebraically closed field k) graded with respect to degree, there is a bijective correspondence between projective algebraic sets in projective n-space over k and homogeneous, radical ideals of R not equal to the irrelevant ideal.[2] More generally, for an arbitrary graded ring R, the Proj construction disregards all irrelevant ideals of R.[3]

YouTube Encyclopedic

  • 1/1
  • Projective Nullstellensatz



  1. ^ Zariski & Samuel 1975, §VII.2, p. 154
  2. ^ Hartshorne 1977, Exercise I.2.4
  3. ^ Hartshorne 1977, §II.2


  • Sections 1.5 and 1.8 of Eisenbud, David (1995), Commutative algebra with a view toward algebraic geometry, Graduate Texts in Mathematics, 150, Berlin, New York: Springer-Verlag, ISBN 978-0-387-94269-8, MR 1322960
  • Hartshorne, Robin (1977), Algebraic Geometry, Graduate Texts in Mathematics, 52, New York: Springer-Verlag, ISBN 978-0-387-90244-9, MR 0463157
  • Zariski, Oscar; Samuel, Pierre (1975), Commutative algebra volume II, Graduate Texts in Mathematics, 29 (Reprint of the 1960 ed.), Berlin, New York: Springer-Verlag, ISBN 978-0-387-90171-8, MR 0389876
This page was last edited on 25 February 2021, at 07:57
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.