To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

Iridium tetroxide

From Wikipedia, the free encyclopedia

Iridium(VIII) oxide
Names
IUPAC name
Iridium(VIII) oxide
Identifiers
3D model (JSmol)
  • InChI=1S/Ir.4O
    Key: WIFDYPVIKSJTTM-UHFFFAOYSA-N
  • O=[Ir](=O)(=O)=O
Properties
IrO4
Molar mass 256.213 g·mol−1
Melting point −267.15 °C (−448.87 °F; 6.00 K)
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).

Iridium tetroxide (IrO4, Iridium(VIII) oxide) is a binary compound of oxygen and iridium in oxidation state +8.[1] This compound was formed by photochemical rearrangement of [(η1-O2)IrO2] in solid argon at a temperature of 6 K (−267.15 °C; −448.87 °F). At higher temperatures, the oxide is unstable.[2] The detection of the iridium tetroxide cation IrO+
4
by infrared photodissociation spectroscopy with formal oxidation state +9 has been reported, the highest currently known of any element.[3][4] However no salts are known, as attempted production of an Ir(IX) salt such as IrO4SbF6 did not result in anything.

References

  1. ^ Gong, Yu; Zhou, Mingfei; Kaupp, Martin; Riedel, Sebastian (2009). "Formation and Characterization of the Iridium Tetroxide Molecule with Iridium in the Oxidation State +VIII". Angewandte Chemie International Edition. 48 (42): 7879–7883. doi:10.1002/anie.200902733. PMID 19593837.
  2. ^ Citra, Angelo; Andrew, Lester (1999). "Reactions of Laser-Ablated Iridium Atoms with O2. Infrared Spectra and DFT Calculations for Iridium Dioxide and Peroxoiridium(VI) Dioxide in Solid Argon". J. Phys. Chem. A. 103 (21): 4182–4190. Bibcode:1999JPCA..103.4182C. doi:10.1021/jp990388o.
  3. ^ Himmel, D.; Knapp, C.; Patzschke, M.; Riedel, S. (2010). "How far can we go? Quantum-chemical investigations of oxidation state IX". ChemPhysChem. 11 (4): 865–869. doi:10.1002/cphc.200900910. PMID 20127784.
  4. ^ Wang, Guanjun; Zhou, Mingfei; Goettel, James T.; Schrobilgen, Gary J.; Su, Jing; Li, Jun; Schlöder, Tobias; Riedel, Sebastian (23 October 2014). "Identification of an iridium-containing compound with a formal oxidation state of IX". Nature. 514 (7523): 475–477. Bibcode:2014Natur.514..475W. doi:10.1038/nature13795. PMID 25341786. S2CID 4463905.

External links

This page was last edited on 29 December 2022, at 17:50
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.