To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

Inglis–Teller equation

From Wikipedia, the free encyclopedia

The Inglis–Teller equation represents an approximate relationship between the plasma density and the principal quantum number of the highest bound state of an atom. The equation was derived by David R. Inglis and Edward Teller in 1939.[1]

In a plasma, atomic levels are broadened and shifted due to the Stark effect, caused by electric microfields formed by the charged plasma particles (ions and electrons). The Stark broadening increases with the principal quantum number , while the energy separation between the nearby levels and decreases. Therefore, above a certain all levels become merged.

Assuming a neutral atomic radiator in a plasma consisting of singly charged ions (and neglecting the electrons), the equation reads

where is the ion particle density and is the Bohr radius. The equation readily generalizes to cases of multiply charged plasma ions and/or charged radiator. Allowance for the effect of electrons is also possible, as was discussed already in the original study.[1]

Spectroscopically, this phenomenon appears as discrete spectral lines merging into continuous spectrum. Therefore, by using the (appropriately generalized) Inglis–Teller equation it is possible to infer the density of laboratory and astrophysical plasmas.[2]

References

  1. ^ a b Inglis, David R.; Teller, Edward (1939). "Ionic depression of series limits in one-electron spectra". The Astrophysical Journal. 90: 439. Bibcode:1939ApJ....90..439I. doi:10.1086/144118. ISSN 0004-637X. Retrieved 2020-12-15.
  2. ^ Griem, Hans R. (1997). Principles of Plasma Spectroscopy. Cambridge Monographs on Plasma Physics. Cambridge: Cambridge University Press. ISBN 978-0-521-61941-7. Retrieved 2020-12-15.
This page was last edited on 3 March 2024, at 10:38
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.