To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
Languages
Recent
Show all languages
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

Ineffable cardinal

From Wikipedia, the free encyclopedia

In the mathematics of transfinite numbers, an ineffable cardinal is a certain kind of large cardinal number, introduced by Jensen & Kunen (1969). In the following definitions, will always be a regular uncountable cardinal number.

A cardinal number is called almost ineffable if for every (where is the powerset of ) with the property that is a subset of for all ordinals , there is a subset of having cardinality and homogeneous for , in the sense that for any in , .

A cardinal number is called ineffable if for every binary-valued function , there is a stationary subset of on which is homogeneous: that is, either maps all unordered pairs of elements drawn from that subset to zero, or it maps all such unordered pairs to one. An equivalent formulation is that a cardinal is ineffable if for every sequence ⟨Aα : α ∈ κ⟩ such that each Aα ⊆ α, there is Aκ such that {ακ : Aα = Aα} is stationary in κ.

Another equivalent formulation is that a regular uncountable cardinal is ineffable if for every set of cardinality of subsets of , there is a normal (i.e. closed under diagonal intersection) non-trivial -complete filter on deciding : that is, for any , either or .[1] This is similar to a characterization of weakly compact cardinals.

More generally, is called -ineffable (for a positive integer ) if for every there is a stationary subset of on which is -homogeneous (takes the same value for all unordered -tuples drawn from the subset). Thus, it is ineffable if and only if it is 2-ineffable.

A totally ineffable cardinal is a cardinal that is -ineffable for every . If is -ineffable, then the set of -ineffable cardinals below is a stationary subset of .

Every -ineffable cardinal is -almost ineffable (with set of -almost ineffable below it stationary), and every -almost ineffable is -subtle (with set of -subtle below it stationary). The least -subtle cardinal is not even weakly compact (and unlike ineffable cardinals, the least -almost ineffable is -describable), but -ineffable cardinals are stationary below every -subtle cardinal.

A cardinal κ is completely ineffable if there is a non-empty such that
- every is stationary
- for every and , there is homogeneous for f with .

Using any finite  > 1 in place of 2 would lead to the same definition, so completely ineffable cardinals are totally ineffable (and have greater consistency strength). Completely ineffable cardinals are -indescribable for every n, but the property of being completely ineffable is .

The consistency strength of completely ineffable is below that of 1-iterable cardinals, which in turn is below remarkable cardinals, which in turn is below ω-Erdős cardinals. A list of large cardinal axioms by consistency strength is available in the section below.

YouTube Encyclopedic

  • 1/5
    Views:
    520
    1 797
    415
    16 212
    1 201
  • List of Large Cardinal Properties
  • Peter Holy - Characterizing large cardinals through forcing
  • Erin Carmody: The relationships between measurable and strongly compact cardinals
  • The Importance of Set Theory | Silvia Jonas
  • Sandra Müller: Lower bounds for the perfect set property at weakly compact cardinals

Transcription

See also

References

  • Friedman, Harvey (2001), "Subtle cardinals and linear orderings", Annals of Pure and Applied Logic, 107 (1–3): 1–34, doi:10.1016/S0168-0072(00)00019-1.
  • Jensen, Ronald; Kunen, Kenneth (1969), Some Combinatorial Properties of L and V, Unpublished manuscript
This page was last edited on 23 February 2024, at 22:44
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.