To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
Languages
Recent
Show all languages
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

Pseudocomplement

From Wikipedia, the free encyclopedia

In mathematics, particularly in order theory, a pseudocomplement is one generalization of the notion of complement. In a lattice L with bottom element 0, an element xL is said to have a pseudocomplement if there exists a greatest element x* ∈ L with the property that xx* = 0. More formally, x* = max{ yL | xy = 0 }. The lattice L itself is called a pseudocomplemented lattice if every element of L is pseudocomplemented. Every pseudocomplemented lattice is necessarily bounded, i.e. it has a 1 as well. Since the pseudocomplement is unique by definition (if it exists), a pseudocomplemented lattice can be endowed with a unary operation * mapping every element to its pseudocomplement; this structure is sometimes called a p-algebra.[1][2] However this latter term may have other meanings in other areas of mathematics.

Properties

In a p-algebra L, for all [1][2]

  • The map xx* is antitone. In particular, 0* = 1 and 1* = 0.
  • The map xx** is a closure.
  • x* = x***.
  • (xy)* = x* ∧ y*.
  • (xy)** = x** ∧ y**.

The set S(L) ≝ { x** | xL } is called the skeleton of L. S(L) is a ∧-subsemilattice of L and together with xy = (xy)** = (x* ∧ y*)* forms a Boolean algebra (the complement in this algebra is *).[1][2] In general, S(L) is not a sublattice of L.[2] In a distributive p-algebra, S(L) is the set of complemented elements of L.[1]

Every element x with the property x* = 0 (or equivalently, x** = 1) is called dense. Every element of the form xx* is dense. D(L), the set of all the dense elements in L is a filter of L.[1][2] A distributive p-algebra is Boolean if and only if D(L) = {1}.[1]

Pseudocomplemented lattices form a variety; indeed, so do pseudocomplemented semilattices.[3]

Examples

  • Every finite distributive lattice is pseudocomplemented.[1]
  • Every Stone algebra is pseudocomplemented. In fact, a Stone algebra can be defined as a pseudocomplemented distributive lattice L in which any of the following equivalent statements hold for all [1]
    • S(L) is a sublattice of L;
    • (xy)* = x* ∨ y*;
    • (xy)** = x** ∨ y**;
    • x* ∨ x** = 1.
  • Every Heyting algebra is pseudocomplemented.[1]
  • If X is a topological space, the (open set) topology on X is a pseudocomplemented (and distributive) lattice with the meet and join being the usual union and intersection of open sets. The pseudocomplement of an open set A is the interior of the set complement of A. Furthermore, the dense elements of this lattice are exactly the dense open subsets in the topological sense.[2]

Relative pseudocomplement

A relative pseudocomplement of a with respect to b is a maximal element c such that acb. This binary operation is denoted ab. A lattice with the pseudocomplement for each two elements is called implicative lattice, or Brouwerian lattice. In general, an implicative lattice may not have a minimal element. If such a minimal element exists, then each pseudocomplement a* could be defined using relative pseudocomplement as a → 0.[4]

See also

References

  1. ^ a b c d e f g h i T.S. Blyth (2006). Lattices and Ordered Algebraic Structures. Springer Science & Business Media. Chapter 7. Pseudocomplementation; Stone and Heyting algebras. pp. 103–119. ISBN 978-1-84628-127-3.
  2. ^ a b c d e f Clifford Bergman (2011). Universal Algebra: Fundamentals and Selected Topics. CRC Press. pp. 63–70. ISBN 978-1-4398-5129-6.
  3. ^ Balbes, Raymond; Horn, Alfred (September 1970). "Stone Lattices". Duke Math. J. 37 (3): 537–545. doi:10.1215/S0012-7094-70-03768-3.
  4. ^ Birkhoff, Garrett (1973). Lattice Theory (3rd ed.). AMS. p. 44.
This page was last edited on 8 April 2024, at 15:59
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.