To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

Hurwitz's theorem (number theory)

From Wikipedia, the free encyclopedia

In number theory, Hurwitz's theorem, named after Adolf Hurwitz, gives a bound on a Diophantine approximation. The theorem states that for every irrational number ξ there are infinitely many relatively prime integers m, n such that

The condition that ξ is irrational cannot be omitted. Moreover the constant is the best possible; if we replace by any number and we let (the golden ratio) then there exist only finitely many relatively prime integers m, n such that the formula above holds.

The theorem is equivalent to the claim that the Markov constant of every number is larger than .

YouTube Encyclopedic

  • 1/3
    Views:
    308
    3 700
    4 671
  • easy Prove Hurwitz theorem in Number theory( Approximation theory)
  • HURWITZ'S THEOREM || ANT || UNIT 1|| Lecture 8
  • Hurwitz's Theorem | Number Theory Part 12 | Mathematise Yourself

Transcription

See also

References

  • Hurwitz, A. (1891). "Ueber die angenäherte Darstellung der Irrationalzahlen durch rationale Brüche" [On the approximate representation of irrational numbers by rational fractions]. Mathematische Annalen (in German). 39 (2): 279–284. doi:10.1007/BF01206656. JFM 23.0222.02. S2CID 119535189.
  • G. H. Hardy, Edward M. Wright, Roger Heath-Brown, Joseph Silverman, Andrew Wiles (2008). "Theorem 193". An introduction to the Theory of Numbers (6th ed.). Oxford science publications. p. 209. ISBN 978-0-19-921986-5.{{cite book}}: CS1 maint: multiple names: authors list (link)
  • LeVeque, William Judson (1956). "Topics in number theory". Addison-Wesley Publishing Co., Inc., Reading, Mass. MR 0080682. {{cite journal}}: Cite journal requires |journal= (help)
  • Ivan Niven (2013). Diophantine Approximations. Courier Corporation. ISBN 978-0486462677.
This page was last edited on 12 December 2023, at 17:44
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.