To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
Languages
Recent
Show all languages
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

Hough function

From Wikipedia, the free encyclopedia

In applied mathematics, the Hough functions are the eigenfunctions of Laplace's tidal equations which govern fluid motion on a rotating sphere. As such, they are relevant in geophysics and meteorology where they form part of the solutions for atmospheric and ocean waves. These functions are named in honour of Sydney Samuel Hough.[1][2][3]

Each Hough mode is a function of latitude and may be expressed as an infinite sum of associated Legendre polynomials; the functions are orthogonal over the sphere in the continuous case. Thus they can also be thought of as a generalized Fourier series in which the basis functions are the normal modes of an atmosphere at rest.

YouTube Encyclopedic

  • 1/3
    Views:
    232 478
    55 569
    81 855
  • How Hough Transform works
  • Hough Transform Explained with Example
  • Hough Transform | Boundary Detection

Transcription

See also

References

  1. ^ Cartwright, David Edgar (2000). Tides: A Scientific History. Cambridge University Press. pp. 85–87. ISBN 9780521621458.
  2. ^ Hough, S. S. (1897). On the Application of Harmonic Analysis to the Dynamical Theory of the Tides. Part I. On Laplace's' Oscillations of the First Species, and on the Dynamics of Ocean Currents. Proceedings of the Royal Society of London, vol. 61, 201–257.
  3. ^ Hough, S. S. (1898). On the application of harmonic analysis to the dynamical theory of the tides. Part II. On the general integration of Laplace's dynamical equations. Philosophical Transactions of the Royal Society of London. Series A, Containing Papers of a Mathematical or Physical Character, vol. 191, 139–185.

Further reading

This page was last edited on 17 February 2024, at 05:02
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.