To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

Hotelling's T-squared distribution

From Wikipedia, the free encyclopedia

In statistics Hotelling's T-squared distribution (T2) is a multivariate distribution proportional to the F-distribution and arises importantly as the distribution of a set of statistics which are natural generalizations of the statistics underlying Student's t-distribution. Hotelling's t-squared statistic (t2) is a generalization of Student's t-statistic that is used in multivariate hypothesis testing.[1]

Distribution

Motivation

The distribution arises in multivariate statistics in undertaking tests of the differences between the (multivariate) means of different populations, where tests for univariate problems would make use of a t-test. The distribution is named for Harold Hotelling, who developed it as a generalization of Student's t-distribution.[1]

Definition

If the vector pd1 is Gaussian multivariate-distributed with zero mean and unit covariance matrix N(p01,pIp) and pMp is a p x p matrix with unit scale matrix and m degrees of freedom with a Wishart distribution W(pIp,m), then the Quadratic form m(1dT p M−1pd1) has a Hotelling T2(p,m) distribution with dimensionality parameter p and m degrees of freedom.[2]

If a random variable X has Hotelling's T-squared distribution, , then:[1]

where is the F-distribution with parameters p and m−p+1.

Statistic

The definition of this multivariate sample statistic follows after it is motivated using a simpler problem.

Motivation

Let denote a p-variate normal distribution with location and known covariance . Let

be n independent identically distributed (iid) random variables, which may be represented as column vectors of real numbers. Define

to be the sample mean with covariance . It can be shown that

where is the chi-squared distribution with p degrees of freedom.

Definition

The covariance matrix used above is often unknown. Here we use instead the sample covariance:

where we denote transpose by an apostrophe. It can be shown that is a positive (semi) definite matrix and follows a p-variate Wishart distribution with n−1 degrees of freedom.[3] The sample covariance matrix of the mean reads .

The Hotelling's t-squared statistic is then defined as:[4]

Also, from the distribution,

where is the F-distribution with parameters p and n − p. In order to calculate a p-value (unrelated to p variable here), note that the distribution of equivalently implies that

Then, use the quantity on the left hand side to evaluate the p-value corresponding to the sample, which comes from the F-distribution.

Two-sample statistic

If and , with the samples independently drawn from two independent multivariate normal distributions with the same mean and covariance, and we define

as the sample means, and

as the respective sample covariance matrices. Then

is the unbiased pooled covariance matrix estimate (an extension of pooled variance).

Finally, the Hotelling's two-sample t-squared statistic is

Related concepts

It can be related to the F-distribution by[3]

The non-null distribution of this statistic is the noncentral F-distribution (the ratio of a non-central Chi-squared random variable and an independent central Chi-squared random variable)

with

where is the difference vector between the population means.

In the two-variable case, the formula simplifies nicely allowing appreciation of how the correlation, , between the variables affects . If we define

and

then

Thus, if the differences in the two rows of the vector are of the same sign, in general, becomes smaller as becomes more positive. If the differences are of opposite sign becomes larger as becomes more positive.

A univariate special case can be found in Welch's t-test.

More robust and powerful tests than Hotelling's two-sample test have been proposed in the literature, see for example the interpoint distance based tests which can be applied also when the number of variables is comparable with, or even larger than, the number of subjects.[5][6]

See also

References

  1. ^ a b c Hotelling, H. (1931). "The generalization of Student's ratio". Annals of Mathematical Statistics. 2 (3): 360–378. doi:10.1214/aoms/1177732979.
  2. ^ Eric W. Weisstein, MathWorld
  3. ^ a b Mardia, K. V.; Kent, J. T.; Bibby, J. M. (1979). Multivariate Analysis. Academic Press. ISBN 978-0-12-471250-8.
  4. ^ "6.5.4.3. Hotelling's T squared".
  5. ^ Marozzi, M. (2016). "Multivariate tests based on interpoint distances with application to magnetic resonance imaging". Statistical Methods in Medical Research. 25 (6): 2593–2610. doi:10.1177/0962280214529104. PMID 24740998.
  6. ^ Marozzi, M. (2015). "Multivariate multidistance tests for high-dimensional low sample size case-control studies". Statistics in Medicine. 34 (9): 1511–1526. doi:10.1002/sim.6418. PMID 25630579.

External links

This page was last edited on 13 November 2019, at 16:13
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.