To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

Hill yield criterion

From Wikipedia, the free encyclopedia

The Hill yield criterion developed by Rodney Hill, is one of several yield criteria for describing anisotropic plastic deformations. The earliest version was a straightforward extension of the von Mises yield criterion and had a quadratic form. This model was later generalized by allowing for an exponent m. Variations of these criteria are in wide use for metals, polymers, and certain composites.

YouTube Encyclopedic

  • 1/5
    Views:
    44 393
    22 390
    2 196
    131 212
    559
  • L9a | MSE203 Yield criteria and yield surfaces
  • Theories Of Failure
  • Mechanics of Materials-Lecture-37-Failure Criteria
  • Richard Stallman at UofC
  • 44a stats Hill criteria

Transcription

Quadratic Hill yield criterion

The quadratic Hill yield criterion[1] has the form

Here F, G, H, L, M, N are constants that have to be determined experimentally and are the stresses. The quadratic Hill yield criterion depends only on the deviatoric stresses and is pressure independent. It predicts the same yield stress in tension and in compression.

Expressions for F, G, H, L, M, N

If the axes of material anisotropy are assumed to be orthogonal, we can write

where are the normal yield stresses with respect to the axes of anisotropy. Therefore we have

Similarly, if are the yield stresses in shear (with respect to the axes of anisotropy), we have

Quadratic Hill yield criterion for plane stress

The quadratic Hill yield criterion for thin rolled plates (plane stress conditions) can be expressed as

where the principal stresses are assumed to be aligned with the axes of anisotropy with in the rolling direction and perpendicular to the rolling direction, , is the R-value in the rolling direction, and is the R-value perpendicular to the rolling direction.

For the special case of transverse isotropy we have and we get

Generalized Hill yield criterion

The generalized Hill yield criterion[2] has the form

where are the principal stresses (which are aligned with the directions of anisotropy), is the yield stress, and F, G, H, L, M, N are constants. The value of m is determined by the degree of anisotropy of the material and must be greater than 1 to ensure convexity of the yield surface.

Generalized Hill yield criterion for anisotropic material

For transversely isotropic materials with being the plane of symmetry, the generalized Hill yield criterion reduces to (with and )

The R-value or Lankford coefficient can be determined by considering the situation where . The R-value is then given by

Under plane stress conditions and with some assumptions, the generalized Hill criterion can take several forms.[3]

  • Case 1:
  • Case 2:
  • Case 3:
  • Case 4:
Care must be exercised in using these forms of the generalized Hill yield criterion because the yield surfaces become concave (sometimes even unbounded) for certain combinations of and .[4]

Hill 1993 yield criterion

In 1993, Hill proposed another yield criterion [5] for plane stress problems with planar anisotropy. The Hill93 criterion has the form

where is the uniaxial tensile yield stress in the rolling direction, is the uniaxial tensile yield stress in the direction normal to the rolling direction, is the yield stress under uniform biaxial tension, and are parameters defined as

and is the R-value for uniaxial tension in the rolling direction, and is the R-value for uniaxial tension in the in-plane direction perpendicular to the rolling direction.

Extensions of Hill's yield criterion

The original versions of Hill's yield criterion were designed for material that did not have pressure-dependent yield surfaces which are needed to model polymers and foams.

The Caddell–Raghava–Atkins yield criterion

An extension that allows for pressure dependence is Caddell–Raghava–Atkins (CRA) model [6] which has the form

The Deshpande–Fleck–Ashby yield criterion

Another pressure-dependent extension of Hill's quadratic yield criterion which has a form similar to the Bresler Pister yield criterion is the Deshpande, Fleck and Ashby (DFA) yield criterion [7] for honeycomb structures (used in sandwich composite construction). This yield criterion has the form

See also

References

  1. ^ R. Hill. (1948). A theory of the yielding and plastic flow of anisotropic metals. Proc. Roy. Soc. London, 193:281–297
  2. ^ R. Hill. (1979). Theoretical plasticity of textured aggregates. Math. Proc. Camb. Phil. Soc., 85(1):179–191.
  3. ^ Chu, E. (1995). Generalization of Hill's 1979 anisotropic yield criteria. Journal of Materials Processing Technology, vol. 50, pp. 207–215.
  4. ^ Zhu, Y., Dodd, B., Caddell, R. M. and Hosford, W. F. (1987). Limitations of Hill's 1979 anisotropic yield criterion. International Journal of Mechanical Sciences, vol. 29, p. 733.
  5. ^ Hill. R. (1993). User-friendly theory of orthotropic plasticity in sheet metals. International Journal of Mechanical Sciences, vol. 35, no. 1, pp. 19–25.
  6. ^ Caddell, R. M., Raghava, R. S. and Atkins, A. G., (1973), Yield criterion for anisotropic and pressure dependent solids such as oriented polymers. Journal of Materials Science, vol. 8, no. 11, pp. 1641–1646.
  7. ^ Deshpande, V. S., Fleck, N. A. and Ashby, M. F. (2001). Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids, vol. 49, no. 8, pp. 1747–1769.

External links

This page was last edited on 4 January 2024, at 11:20
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.