To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
Show all languages
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.

Higher-dimensional algebra

From Wikipedia, the free encyclopedia

In mathematics, especially (higher) category theory, higher-dimensional algebra is the study of categorified structures. It has applications in nonabelian algebraic topology, and generalizes abstract algebra.

YouTube Encyclopedic

  • 1/5
    37 543
    4 782 006
    2 183
    150 496
    2 711 784
  • Math Mornings at Yale: Higher Dimensional Space and the Things In It
  • The things you'll find in higher dimensions
  • Workshop on Higher Dimensional Algebraic Geometry - Kaloghiros
  • Higher-Dimensional Tic-Tac-Toe | Infinite Series
  • Four Dimensional Maths: Things to See and Hear in the Fourth Dimension - with Matt Parker


Higher-dimensional categories

A first step towards defining higher dimensional algebras is the concept of 2-category of higher category theory, followed by the more 'geometric' concept of double category.[1] [2][3]

A higher level concept is thus defined as a category of categories, or super-category, which generalises to higher dimensions the notion of category – regarded as any structure which is an interpretation of Lawvere's axioms of the elementary theory of abstract categories (ETAC).[4][5][6][7] Thus, a supercategory and also a super-category, can be regarded as natural extensions of the concepts of meta-category,[8] multicategory, and multi-graph, k-partite graph, or colored graph (see a color figure, and also its definition in graph theory).

Supercategories were first introduced in 1970,[9] and were subsequently developed for applications in theoretical physics (especially quantum field theory and topological quantum field theory) and mathematical biology or mathematical biophysics.[10]

Other pathways in higher-dimensional algebra involve: bicategories, homomorphisms of bicategories, variable categories (also known as indexed or parametrized categories), topoi, effective descent, and enriched and internal categories.

Double groupoids

In higher-dimensional algebra (HDA), a double groupoid is a generalisation of a one-dimensional groupoid to two dimensions,[11] and the latter groupoid can be considered as a special case of a category with all invertible arrows, or morphisms.

Double groupoids are often used to capture information about geometrical objects such as higher-dimensional manifolds (or n-dimensional manifolds).[11] In general, an n-dimensional manifold is a space that locally looks like an n-dimensional Euclidean space, but whose global structure may be non-Euclidean.

Double groupoids were first introduced by Ronald Brown in Double groupoids and crossed modules (1976),[11] and were further developed towards applications in nonabelian algebraic topology.[12][13][14][15] A related, 'dual' concept is that of a double algebroid, and the more general concept of R-algebroid.

Nonabelian algebraic topology

See Nonabelian algebraic topology


Theoretical physics

In quantum field theory, there exist quantum categories.[16][17][18] and quantum double groupoids.[18] One can consider quantum double groupoids to be fundamental groupoids defined via a 2-functor, which allows one to think about the physically interesting case of quantum fundamental groupoids (QFGs) in terms of the bicategory Span(Groupoids), and then constructing 2-Hilbert spaces and 2-linear maps for manifolds and cobordisms. At the next step, one obtains cobordisms with corners via natural transformations of such 2-functors. A claim was then made that, with the gauge group SU(2), "the extended TQFT, or ETQFT, gives a theory equivalent to the Ponzano–Regge model of quantum gravity";[18] similarly, the Turaev–Viro model would be then obtained with representations of SUq(2). Therefore, one can describe the state space of a gauge theory – or many kinds of quantum field theories (QFTs) and local quantum physics, in terms of the transformation groupoids given by symmetries, as for example in the case of a gauge theory, by the gauge transformations acting on states that are, in this case, connections. In the case of symmetries related to quantum groups, one would obtain structures that are representation categories of quantum groupoids,[16] instead of the 2-vector spaces that are representation categories of groupoids.

Quantum physics

See also


  1. ^ "Double Categories and Pseudo Algebras" (PDF). Archived from the original (PDF) on 2010-06-10.
  2. ^ Brown, R.; Loday, J.-L. (1987). "Homotopical excision, and Hurewicz theorems, for n-cubes of spaces". Proceedings of the London Mathematical Society. 54 (1): 176–192. CiteSeerX doi:10.1112/plms/s3-54.1.176.
  3. ^ Batanin, M.A. (1998). "Monoidal Globular Categories As a Natural Environment for the Theory of Weak n-Categories". Advances in Mathematics. 136 (1): 39–103. doi:10.1006/aima.1998.1724.
  4. ^ Lawvere, F. W. (1964). "An Elementary Theory of the Category of Sets". Proceedings of the National Academy of Sciences of the United States of America. 52 (6): 1506–1511. Bibcode:1964PNAS...52.1506L. doi:10.1073/pnas.52.6.1506. PMC 300477. PMID 16591243.
  5. ^ Lawvere, F. W.: 1966, The Category of Categories as a Foundation for Mathematics., in Proc. Conf. Categorical Algebra – La Jolla., Eilenberg, S. et al., eds. Springer-Verlag: Berlin, Heidelberg and New York., pp. 1–20. Archived 2009-08-12 at the Wayback Machine
  6. ^ "Kryptowährungen und Physik". PlanetPhysics. 29 March 2024.
  7. ^ Lawvere, F. W. (1969b). "Adjointness in Foundations". Dialectica. 23 (3–4): 281–295. CiteSeerX doi:10.1111/j.1746-8361.1969.tb01194.x. Archived from the original on 2009-08-12. Retrieved 2009-06-21.
  8. ^ "Axioms of Metacategories and Supercategories". PlanetPhysics. Archived from the original on 2009-08-14. Retrieved 2009-03-02.
  9. ^ "Supercategory theory". PlanetMath. Archived from the original on 2008-10-26.
  10. ^ "Mathematical Biology and Theoretical Biophysics". PlanetPhysics. Archived from the original on 2009-08-14. Retrieved 2009-03-02.
  11. ^ a b c Brown, Ronald; Spencer, Christopher B. (1976). "Double groupoids and crossed modules". Cahiers de Topologie et Géométrie Différentielle Catégoriques. 17 (4): 343–362.
  12. ^ "Non-commutative Geometry and Non-Abelian Algebraic Topology". PlanetPhysics. Archived from the original on 2009-08-14. Retrieved 2009-03-02.
  13. ^ Non-Abelian Algebraic Topology book Archived 2009-06-04 at the Wayback Machine
  14. ^ Nonabelian Algebraic Topology: Higher homotopy groupoids of filtered spaces
  15. ^ Brown, Ronald; Higgins, Philip; Sivera, Rafael (2011). Nonabelian Algebraic Topology. arXiv:math/0407275. doi:10.4171/083. ISBN 978-3-03719-083-8.
  16. ^ a b "Quantum category". PlanetMath. Archived from the original on 2011-12-01.
  17. ^ "Associativity Isomorphism". PlanetMath. Archived from the original on 2010-12-17.
  18. ^ a b c Morton, Jeffrey (March 18, 2009). "A Note on Quantum Groupoids". C*-algebras, deformation theory, groupoids, noncommutative geometry, quantization. Theoretical Atlas.

Further reading

This page was last edited on 14 April 2024, at 07:02
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.