To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

Hexafluorothioacetone

From Wikipedia, the free encyclopedia

Hexafluorothioacetone
Names
Preferred IUPAC name
1,1,1,3,3,3-Hexafluoropropane-2-thione
Other names
Perfluorothioacetone
Identifiers
3D model (JSmol)
ChemSpider
  • InChI=1S/C3F6S/c4-2(5,6)1(10)3(7,8)9[1]
    Key: DBNMHLDZMPEZCX-UHFFFAOYSA-N
  • FC(F)(F)C(=S)C(F)(F)F
Properties
C3F6S
Molar mass 182.08 g·mol−1
Appearance blue gas
Boiling point 8 °C (46 °F; 281 K)
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).

Hexafluorothioacetone is an organic perfluoro thione compound with formula CF3CSCF3. At standard conditions it is a blue gas.[2]

Production

Hexafluorothioacetone was first produced by Middleton in 1961 by boiling bis-(perfluoroisopropyl)mercury with sulfur.

Properties

Hexafluorothioacetone boils at 8 °C.[3] Below this it is a blue liquid.[2]

Colour

The blue colour is due to absorption in the visible light range with bands at 800–675 nm and 725–400 nm. These bands are due to T1–S0 and S1–S0 transitions.[2] There is also a strong absorption in ultraviolet around 230-190 nm.[2]

Reactions

Hexafluorothioacetone acts more like a true thiocarbonyl (C=S) than many other thiocarbonyl compounds, because it is not able to form thioenol compounds (=C-S-H), and the sulfur is not in a negative ionized state (C-S).[4] Hexafluorothioacetone is not attacked by water or oxygen at standard conditions as are many other thiocarbonyls.[2]

Bases trigger the formation of a dimer 2,2,4,4-tetrakis-(trifluoromethyl)-1,3-dithietane.[2] Bases includes amines.[4]

The dimer can be heated to regenerate the hexafluorothioacetone monomer.[2]

The dimer is also produced in a reaction with hexafluoropropene and sulfur with some potassium fluoride.[2][5]

Hexafluorothioacetone reacts with bisulfite to form a Bunte salt CH(CF3)2SSO2.[4]

Thiols reacting with hexafluorothioacetone yield disulfides or a thiohemiketal:

R-SH + C(CF3)2S → R-S-S-CH(CF3)2.[4]
R-SH + C(CF3)2S → RSC(CF3)2SH (for example in methanethiol or ethanethiol).[4]

With mercaptoacetic acid, instead of a thiohemiketal, water elimination yields a ring shaped molecule called a dithiolanone -CH2C(O)SC(CF3)2S- (2,2-di(trifluoromethyl)-1,3-dithiolan-4-one).[4] Aqueous hydrogen chloride results in the formation of a dimeric disulfide CH(CF3)2SSC(CF3)2Cl.[4] Hydrogen bromide with water yields the similar CH(CF3)2SSC(CF3)2Br.[4] Dry hydrogen iodide does something different and reduces the sulfur making CH(CF3)2SH. Wet hydrogen iodide only reduces to a disulfide CH(CF3)2SSC(CF3)2H. Strong organic acids add water to yield a disulfide compound CH(CF3)2SSC(CF3)2OH.[4]

Chlorine and bromine add to hexafluorothioacetone to make CCl(CF3)2SCl and CBr(CF3)2SBr.[4]

With diazomethane hexafluorothioacetone produces 2,2,5,5-tetrakis(trifluoromethyl)-l,3-dithiolane, another substituted dithiolane.[4] Diphenyldiazoniethane reacts to form a three membered ring called a thiirane (di-2,2-trifluoromethyl-di-3,3-phenyl-thiirane)

Trialkylphosphites (P(OR)3) react to make a trialkoxybis(trifluoromethyl)methylenephosphorane (RO)3P=C(CF3)2 and a thiophosphite (RO)3PS.[4]

Hexafluorothioacetone can act as a ligand on nickel.[6]

Hexafluorothioacetone is highly reactive to alkenes and dienes combining via addition reactions. With butadiene it reacts even as low as -78 °C to yield 2,2-bis-(trifluoromethyl)-3,6-dihydro-2H-l-thiapyran.[7]

See also

References

  1. ^ Gupta, Kartick; Giri, Santanab; Chattaraj, P. K. (February 2013). "Charge-based DFT descriptors for Diels-Alder reactions". Journal of Physical Organic Chemistry. 26 (2): 187–193. doi:10.1002/poc.2987.
  2. ^ a b c d e f g h Clouthier, Dennis J.; Joo, Duck-Lae (8 May 1997). "The spectroscopy of hexafluorothioacetone, a blue gas". The Journal of Chemical Physics. 106 (18): 7479–7490. Bibcode:1997JChPh.106.7479C. doi:10.1063/1.473753.
  3. ^ Knunyants, I. L.; Yakobson, G. G. (2012). Syntheses of Fluoroorganic Compounds. Springer Science & Business Media. pp. 45–46. ISBN 9783642702075.
  4. ^ a b c d e f g h i j k l Middleton, W. J.; Sharkey, W. H. (May 1965). "Fluorothiocarbonyl Compounds. II. Reactions of Hexafluorothioacetone". The Journal of Organic Chemistry. 30 (5): 1384–1390. doi:10.1021/jo01016a009.
  5. ^ Dyatkin, B.L.; Sterlin, S.R.; Zhuravkova, L.G.; Martynov, B.I.; Mysov, E.I.; Knunyants, I.L. (January 1973). "Reactions of perfluoroalkylcarbanions with sulphur". Tetrahedron. 29 (18): 2759–2767. doi:10.1016/S0040-4020(01)93398-8.
  6. ^ Browning, Jane; Cundy, C. S.; Green, M.; Stone, F. G. A. (1969). "Hexafluoroacetone and hexafluorothioacetone nickel complexes". Journal of the Chemical Society A: Inorganic, Physical, Theoretical: 20. doi:10.1039/J19690000020.
  7. ^ Middleton, W. J.; Howard, E. G.; Sharkey, W. H. (June 1961). "Perfluorothiocarbonyl Compounds". Journal of the American Chemical Society. 83 (11): 2589–2590. doi:10.1021/ja01472a045.

External links

This page was last edited on 17 April 2024, at 20:09
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.