To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Languages
Recent
Show all languages
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

In mathematics, specifically in operator theory, each linear operator ${\displaystyle A}$ on an inner product space defines a Hermitian adjoint (or adjoint) operator ${\displaystyle A^{*}}$ on that space according to the rule

${\displaystyle \langle Ax,y\rangle =\langle x,A^{*}y\rangle ,}$

where ${\displaystyle \langle \cdot ,\cdot \rangle }$ is the inner product on the vector space.

The adjoint may also be called the Hermitian conjugate or simply the Hermitian[1] after Charles Hermite. It is often denoted by A in fields like physics, especially when used in conjunction with bra–ket notation in quantum mechanics. In finite dimensions where operators are represented by matrices, the Hermitian adjoint is given by the conjugate transpose (also known as the Hermitian transpose).

The above definition of an adjoint operator extends verbatim to bounded linear operators on Hilbert spaces ${\displaystyle H}$. The definition has been further extended to include unbounded densely defined operators whose domain is topologically dense in - but not necessarily equal to - ${\displaystyle H.}$

• 1/5
Views:
41 328
128 109
14 712
7 182
4 248
• Adjoints, Transposes and Hermitian Conjugates
• Complex, Hermitian, and Unitary Matrices
• Ch 9: What are Hermitian operators? | Maths of Quantum Mechanics
• Adjoint / Daggered Operators in Quantum Mechanics
• Introduction to self adjoint and hermitian operators

## Informal definition

Consider a linear map ${\displaystyle A:H_{1}\to H_{2}}$ between Hilbert spaces. Without taking care of any details, the adjoint operator is the (in most cases uniquely defined) linear operator ${\displaystyle A^{*}:H_{2}\to H_{1}}$ fulfilling

${\displaystyle \left\langle Ah_{1},h_{2}\right\rangle _{H_{2}}=\left\langle h_{1},A^{*}h_{2}\right\rangle _{H_{1}},}$

where ${\displaystyle \langle \cdot ,\cdot \rangle _{H_{i}}}$ is the inner product in the Hilbert space ${\displaystyle H_{i}}$, which is linear in the first coordinate and antilinear in the second coordinate. Note the special case where both Hilbert spaces are identical and ${\displaystyle A}$ is an operator on that Hilbert space.

When one trades the inner product for the dual pairing, one can define the adjoint, also called the transpose, of an operator ${\displaystyle A:E\to F}$, where ${\displaystyle E,F}$ are Banach spaces with corresponding norms ${\displaystyle \|\cdot \|_{E},\|\cdot \|_{F}}$. Here (again not considering any technicalities), its adjoint operator is defined as ${\displaystyle A^{*}:F^{*}\to E^{*}}$ with

${\displaystyle A^{*}f=f\circ A:u\mapsto f(Au),}$

I.e., ${\displaystyle \left(A^{*}f\right)(u)=f(Au)}$ for ${\displaystyle f\in F^{*},u\in E}$.

The above definition in the Hilbert space setting is really just an application of the Banach space case when one identifies a Hilbert space with its dual. Then it is only natural that we can also obtain the adjoint of an operator ${\displaystyle A:H\to E}$, where ${\displaystyle H}$ is a Hilbert space and ${\displaystyle E}$ is a Banach space. The dual is then defined as ${\displaystyle A^{*}:E^{*}\to H}$ with ${\displaystyle A^{*}f=h_{f}}$ such that

${\displaystyle \langle h_{f},h\rangle _{H}=f(Ah).}$

## Definition for unbounded operators between Banach spaces

Let ${\displaystyle \left(E,\|\cdot \|_{E}\right),\left(F,\|\cdot \|_{F}\right)}$ be Banach spaces. Suppose ${\displaystyle A:D(A)\to F}$ and ${\displaystyle D(A)\subset E}$, and suppose that ${\displaystyle A}$ is a (possibly unbounded) linear operator which is densely defined (i.e., ${\displaystyle D(A)}$ is dense in ${\displaystyle E}$). Then its adjoint operator ${\displaystyle A^{*}}$ is defined as follows. The domain is

${\displaystyle D\left(A^{*}\right):=\left\{g\in F^{*}:~\exists c\geq 0:~{\mbox{ for all }}u\in D(A):~|g(Au)|\leq c\cdot \|u\|_{E}\right\}.}$

Now for arbitrary but fixed ${\displaystyle g\in D(A^{*})}$ we set ${\displaystyle f:D(A)\to \mathbb {R} }$ with ${\displaystyle f(u)=g(Au)}$. By choice of ${\displaystyle g}$ and definition of ${\displaystyle D(A^{*})}$, f is (uniformly) continuous on ${\displaystyle D(A)}$ as ${\displaystyle |f(u)|=|g(Au)|\leq c\cdot \|u\|_{E}}$. Then by Hahn–Banach theorem or alternatively through extension by continuity this yields an extension of ${\displaystyle f}$, called ${\displaystyle {\hat {f}}}$ defined on all of ${\displaystyle E}$. This technicality is necessary to later obtain ${\displaystyle A^{*}}$ as an operator ${\displaystyle D\left(A^{*}\right)\to E^{*}}$ instead of ${\displaystyle D\left(A^{*}\right)\to (D(A))^{*}.}$ Remark also that this does not mean that ${\displaystyle A}$ can be extended on all of ${\displaystyle E}$ but the extension only worked for specific elements ${\displaystyle g\in D\left(A^{*}\right)}$.

Now we can define the adjoint of ${\displaystyle A}$ as

{\displaystyle {\begin{aligned}A^{*}:F^{*}\supset D(A^{*})&\to E^{*}\\g&\mapsto A^{*}g={\hat {f}}\end{aligned}}}

The fundamental defining identity is thus

${\displaystyle g(Au)=\left(A^{*}g\right)(u)}$ for ${\displaystyle u\in D(A).}$

## Definition for bounded operators between Hilbert spaces

Suppose H is a complex Hilbert space, with inner product ${\displaystyle \langle \cdot ,\cdot \rangle }$. Consider a continuous linear operator A : HH (for linear operators, continuity is equivalent to being a bounded operator). Then the adjoint of A is the continuous linear operator A : HH satisfying

${\displaystyle \langle Ax,y\rangle =\left\langle x,A^{*}y\right\rangle \quad {\mbox{for all }}x,y\in H.}$

Existence and uniqueness of this operator follows from the Riesz representation theorem.[2]

This can be seen as a generalization of the adjoint matrix of a square matrix which has a similar property involving the standard complex inner product.

## Properties

The following properties of the Hermitian adjoint of bounded operators are immediate:[2]

1. Involutivity: A∗∗ = A
2. If A is invertible, then so is A, with ${\textstyle \left(A^{*}\right)^{-1}=\left(A^{-1}\right)^{*}}$
3. Anti-linearity:
4. "Anti-distributivity": (AB) = BA

If we define the operator norm of A by

${\displaystyle \|A\|_{\text{op}}:=\sup \left\{\|Ax\|:\|x\|\leq 1\right\}}$

then

${\displaystyle \left\|A^{*}\right\|_{\text{op}}=\|A\|_{\text{op}}.}$[2]

Moreover,

${\displaystyle \left\|A^{*}A\right\|_{\text{op}}=\|A\|_{\text{op}}^{2}.}$[2]

One says that a norm that satisfies this condition behaves like a "largest value", extrapolating from the case of self-adjoint operators.

The set of bounded linear operators on a complex Hilbert space H together with the adjoint operation and the operator norm form the prototype of a C*-algebra.

## Adjoint of densely defined unbounded operators between Hilbert spaces

### Definition

Let the inner product ${\displaystyle \langle \cdot ,\cdot \rangle }$ be linear in the first argument. A densely defined operator A from a complex Hilbert space H to itself is a linear operator whose domain D(A) is a dense linear subspace of H and whose values lie in H.[3] By definition, the domain D(A) of its adjoint A is the set of all yH for which there is a zH satisfying

${\displaystyle \langle Ax,y\rangle =\langle x,z\rangle \quad {\mbox{for all }}x\in D(A).}$

Owing to the density of ${\displaystyle D(A)}$ and Riesz representation theorem, ${\displaystyle z}$ is uniquely defined, and, by definition, ${\displaystyle A^{*}y=z.}$[4]

Properties 1.–5. hold with appropriate clauses about domains and codomains.[clarification needed] For instance, the last property now states that (AB) is an extension of BA if A, B and AB are densely defined operators.[5]

### ker A*=(im A)⊥

For every ${\displaystyle y\in \ker A^{*},}$ the linear functional ${\displaystyle x\mapsto \langle Ax,y\rangle =\langle x,A^{*}y\rangle }$ is identically zero, and hence ${\displaystyle y\in (\operatorname {im} A)^{\perp }.}$

Conversely, the assumption that ${\displaystyle y\in (\operatorname {im} A)^{\perp }}$ causes the functional ${\displaystyle x\mapsto \langle Ax,y\rangle }$ to be identically zero. Since the functional is obviously bounded, the definition of ${\displaystyle A^{*}}$ assures that ${\displaystyle y\in D(A^{*}).}$ The fact that, for every ${\displaystyle x\in D(A),}$ ${\displaystyle \langle Ax,y\rangle =\langle x,A^{*}y\rangle =0}$ shows that ${\displaystyle A^{*}y\in D(A)^{\perp }={\overline {D(A)}}^{\perp }=\{0\},}$ given that ${\displaystyle D(A)}$ is dense.

This property shows that ${\displaystyle \operatorname {ker} A^{*}}$ is a topologically closed subspace even when ${\displaystyle D(A^{*})}$ is not.

### Geometric interpretation

If ${\displaystyle H_{1}}$ and ${\displaystyle H_{2}}$ are Hilbert spaces, then ${\displaystyle H_{1}\oplus H_{2}}$ is a Hilbert space with the inner product

${\displaystyle {\bigl \langle }(a,b),(c,d){\bigr \rangle }_{H_{1}\oplus H_{2}}{\stackrel {\text{def}}{=}}\langle a,c\rangle _{H_{1}}+\langle b,d\rangle _{H_{2}},}$

where ${\displaystyle a,c\in H_{1}}$ and ${\displaystyle b,d\in H_{2}.}$

Let ${\displaystyle J\colon H\oplus H\to H\oplus H}$ be the symplectic mapping, i.e. ${\displaystyle J(\xi ,\eta )=(-\eta ,\xi ).}$ Then the graph

${\displaystyle G(A^{*})=\{(x,y)\mid x\in D(A^{*}),\ y=A^{*}x\}\subseteq H\oplus H}$

of ${\displaystyle A^{*}}$ is the orthogonal complement of ${\displaystyle JG(A):}$

${\displaystyle G(A^{*})=(JG(A))^{\perp }=\{(x,y)\in H\oplus H:{\bigl \langle }(x,y),(-A\xi ,\xi ){\bigr \rangle }_{H\oplus H}=0\;\;\forall \xi \in D(A)\}.}$

The assertion follows from the equivalences

${\displaystyle {\bigl \langle }(x,y),(-A\xi ,\xi ){\bigr \rangle }=0\quad \Leftrightarrow \quad \langle A\xi ,x\rangle =\langle \xi ,y\rangle ,}$

and

${\displaystyle {\Bigl [}\forall \xi \in D(A)\ \ \langle A\xi ,x\rangle =\langle \xi ,y\rangle {\Bigr ]}\quad \Leftrightarrow \quad x\in D(A^{*})\ \&\ y=A^{*}x.}$

#### Corollaries

##### A* is closed

An operator ${\displaystyle A}$ is closed if the graph ${\displaystyle G(A)}$ is topologically closed in ${\displaystyle H\oplus H.}$ The graph ${\displaystyle G(A^{*})}$ of the adjoint operator ${\displaystyle A^{*}}$ is the orthogonal complement of a subspace, and therefore is closed.

##### A* is densely defined ⇔ A is closable

An operator ${\displaystyle A}$ is closable if the topological closure ${\displaystyle G^{\text{cl}}(A)\subseteq H\oplus H}$ of the graph ${\displaystyle G(A)}$ is the graph of a function. Since ${\displaystyle G^{\text{cl}}(A)}$ is a (closed) linear subspace, the word "function" may be replaced with "linear operator". For the same reason, ${\displaystyle A}$ is closable if and only if ${\displaystyle (0,v)\notin G^{\text{cl}}(A)}$ unless ${\displaystyle v=0.}$

The adjoint ${\displaystyle A^{*}}$ is densely defined if and only if ${\displaystyle A}$ is closable. This follows from the fact that, for every ${\displaystyle v\in H,}$

${\displaystyle v\in D(A^{*})^{\perp }\ \Leftrightarrow \ (0,v)\in G^{\text{cl}}(A),}$

which, in turn, is proven through the following chain of equivalencies:

{\displaystyle {\begin{aligned}v\in D(A^{*})^{\perp }&\Longleftrightarrow (v,0)\in G(A^{*})^{\perp }\Longleftrightarrow (v,0)\in (JG(A))^{\text{cl}}=JG^{\text{cl}}(A)\\&\Longleftrightarrow (0,-v)=J^{-1}(v,0)\in G^{\text{cl}}(A)\\&\Longleftrightarrow (0,v)\in G^{\text{cl}}(A).\end{aligned}}}
##### A** = Acl

The closure ${\displaystyle A^{\text{cl}}}$ of an operator ${\displaystyle A}$ is the operator whose graph is ${\displaystyle G^{\text{cl}}(A)}$ if this graph represents a function. As above, the word "function" may be replaced with "operator". Furthermore, ${\displaystyle A^{**}=A^{\text{cl}},}$ meaning that ${\displaystyle G(A^{**})=G^{\text{cl}}(A).}$

To prove this, observe that ${\displaystyle J^{*}=-J,}$ i.e. ${\displaystyle \langle Jx,y\rangle _{H\oplus H}=-\langle x,Jy\rangle _{H\oplus H},}$ for every ${\displaystyle x,y\in H\oplus H.}$ Indeed,

{\displaystyle {\begin{aligned}\langle J(x_{1},x_{2}),(y_{1},y_{2})\rangle _{H\oplus H}&=\langle (-x_{2},x_{1}),(y_{1},y_{2})\rangle _{H\oplus H}=\langle -x_{2},y_{1}\rangle _{H}+\langle x_{1},y_{2}\rangle _{H}\\&=\langle x_{1},y_{2}\rangle _{H}+\langle x_{2},-y_{1}\rangle _{H}=\langle (x_{1},x_{2}),-J(y_{1},y_{2})\rangle _{H\oplus H}.\end{aligned}}}

In particular, for every ${\displaystyle y\in H\oplus H}$ and every subspace ${\displaystyle V\subseteq H\oplus H,}$ ${\displaystyle y\in (JV)^{\perp }}$ if and only if ${\displaystyle Jy\in V^{\perp }.}$ Thus, ${\displaystyle J[(JV)^{\perp }]=V^{\perp }}$ and ${\displaystyle [J[(JV)^{\perp }]]^{\perp }=V^{\text{cl}}.}$ Substituting ${\displaystyle V=G(A),}$ obtain ${\displaystyle G^{\text{cl}}(A)=G(A^{**}).}$

##### A* = (Acl)*

For a closable operator ${\displaystyle A,}$ ${\displaystyle A^{*}=\left(A^{\text{cl}}\right)^{*},}$ meaning that ${\displaystyle G(A^{*})=G\left(\left(A^{\text{cl}}\right)^{*}\right).}$ Indeed,

${\displaystyle G\left(\left(A^{\text{cl}}\right)^{*}\right)=\left(JG^{\text{cl}}(A)\right)^{\perp }=\left(\left(JG(A)\right)^{\text{cl}}\right)^{\perp }=(JG(A))^{\perp }=G(A^{*}).}$

### Counterexample where the adjoint is not densely defined

Let ${\displaystyle H=L^{2}(\mathbb {R} ,l),}$ where ${\displaystyle l}$ is the linear measure. Select a measurable, bounded, non-identically zero function ${\displaystyle f\notin L^{2},}$ and pick ${\displaystyle \varphi _{0}\in L^{2}\setminus \{0\}.}$ Define

${\displaystyle A\varphi =\langle f,\varphi \rangle \varphi _{0}.}$

It follows that ${\displaystyle D(A)=\{\varphi \in L^{2}\mid \langle f,\varphi \rangle \neq \infty \}.}$ The subspace ${\displaystyle D(A)}$ contains all the ${\displaystyle L^{2}}$ functions with compact support. Since ${\displaystyle \mathbf {1} _{[-n,n]}\cdot \varphi \ {\stackrel {L^{2}}{\to }}\ \varphi ,}$ ${\displaystyle A}$ is densely defined. For every ${\displaystyle \varphi \in D(A)}$ and ${\displaystyle \psi \in D(A^{*}),}$

${\displaystyle \langle \varphi ,A^{*}\psi \rangle =\langle A\varphi ,\psi \rangle =\langle \langle f,\varphi \rangle \varphi _{0},\psi \rangle =\langle f,\varphi \rangle \cdot \langle \varphi _{0},\psi \rangle =\langle \varphi ,\langle \varphi _{0},\psi \rangle f\rangle .}$

Thus, ${\displaystyle A^{*}\psi =\langle \varphi _{0},\psi \rangle f.}$ The definition of adjoint operator requires that ${\displaystyle \mathop {\text{Im}} A^{*}\subseteq H=L^{2}.}$ Since ${\displaystyle f\notin L^{2},}$ this is only possible if ${\displaystyle \langle \varphi _{0},\psi \rangle =0.}$ For this reason, ${\displaystyle D(A^{*})=\{\varphi _{0}\}^{\perp }.}$ Hence, ${\displaystyle A^{*}}$ is not densely defined and is identically zero on ${\displaystyle D(A^{*}).}$ As a result, ${\displaystyle A}$ is not closable and has no second adjoint ${\displaystyle A^{**}.}$

## Hermitian operators

A bounded operator A : HH is called Hermitian or self-adjoint if

${\displaystyle A=A^{*}}$

which is equivalent to

${\displaystyle \langle Ax,y\rangle =\langle x,Ay\rangle {\mbox{ for all }}x,y\in H.}$[6]

In some sense, these operators play the role of the real numbers (being equal to their own "complex conjugate") and form a real vector space. They serve as the model of real-valued observables in quantum mechanics. See the article on self-adjoint operators for a full treatment.

For an antilinear operator the definition of adjoint needs to be adjusted in order to compensate for the complex conjugation. An adjoint operator of the antilinear operator A on a complex Hilbert space H is an antilinear operator A : HH with the property:

${\displaystyle \langle Ax,y\rangle ={\overline {\left\langle x,A^{*}y\right\rangle }}\quad {\text{for all }}x,y\in H.}$

The equation

${\displaystyle \langle Ax,y\rangle =\left\langle x,A^{*}y\right\rangle }$

is formally similar to the defining properties of pairs of adjoint functors in category theory, and this is where adjoint functors got their name from.

• Mathematical concepts
• Physical applications

## References

1. ^ Miller, David A. B. (2008). Quantum Mechanics for Scientists and Engineers. Cambridge University Press. pp. 262, 280.
2. ^ a b c d Reed & Simon 2003, pp. 186–187; Rudin 1991, §12.9
3. ^ See unbounded operator for details.
4. ^ Reed & Simon 2003, p. 252; Rudin 1991, §13.1
5. ^ Rudin 1991, Thm 13.2
6. ^ Reed & Simon 2003, pp. 187; Rudin 1991, §12.11